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Abstract— Parameter identification and output regulation are
generally conflicting objectives. However, in the case of certain
overactuated systems, there is an opportunity to achieve these
objectives simultaneously. This paper presents a simultaneous
identification and adaptive control design methodology for
overactuated systems which is applied to the torque regulation
problem for permanent magnet synchronous machines. Exci-
tation and control inputs to the system are first designated.
The excitation input is then treated as a disturbance which
is decoupled from the regulated output via an excitation de-
coupling control law. Machine parameters are estimated with a
normalized gradient-based algorithm, and necessary conditions
for parameter convergence are established. Simulation results
confirm the necessary conditions for parameter convergence,
as well as the effectiveness of the resulting closed-loop torque
regulator.

I. INTRODUCTION

Parameter identification and output regulation are typically
conflicting objectives. Generally, a trade-off must be made
between ensuring that inputs to the system under control
are persistently exciting and maintaining tight regulation
of “performance” (i.e., regulated) outputs. However, in the
case of certain overactuated systems there is an opportunity
to achieve these objectives simultaneously. For example,
field-oriented output torque regulation in Permanent Magnet
Synchronous Machines (PMSMs) constitutes an overactuated
control problem in that there are two distinct inputs to the
system, the direct-axis voltage input and the quadrature-axis
voltage input, and one regulated output, torque. The direct-
axis voltage is typically used to set magnetic field (flux)
levels in the machine by regulating the direct-axis stator
current, while the quadrature-axis voltage is used to regulate
the electromagnetic torque by regulating the quadrature-axis
stator current.

The PMSM has seen increasing popularity in recent years,
particularly in transportation applications as well as industrial
applications aimed at induction motor replacement, thanks
to its high torque density and high efficiency. However,
temperature changes, skin effect, and magnetic saturation
lead to changes in the machine parameters which in turn
detune the drive system, causing performance degradation.
The stator winding resistance is primarily impacted by tem-
perature variations, which can lead to increases in resistance
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by as much as 100% [1]. While the permanent magnet flux
magnitude also varies with temperature, the variation tends
to be small, around -0.1% per ◦C for neodymium (NdFeB)
magnets [2], which results in a mere 5% variation for a
rather large 50◦C increase in temperature. Finally, while the
electrical frequencies needed to see a significant rise in stator
resistance due to skin effect are not typically encountered,
high-speed applications using motors with a high pole-pair
count may see an impact due to skin effect.

Many different approaches to compensating parameter
variations in PMSMs have been proposed by researchers.
Steady-state machine models have been used to avoid the
additional complexity that comes with using dynamic models
for parameter estimation [3], [4]. Open-loop [5], as well as
closed-loop [6], [7] approaches have been presented which
utilize the method of least-squares for PMSM parameter esti-
mation. The gradient method is used in [8] to provide online
estimates of the lumped time-varying disturbances caused
by parameter variations. While artificial neural networks
have been proposed for online adaptation [9], Lyapunov-
based adaptive designs provide an attractive alternative as a
stability proof is a byproduct of the design process [10], [11].
However, with the exception of [10], none of these papers
proposes a design which specifically considers Simultaneous
Identification and Control (SIC) in their design.

The inherent trade-off in SIC designs makes optimization
based approaches a natural choice for achieving the SIC
objective. In particular, Model-Predictive Control (MPC) is
an attractive platform for incorporating the SIC objective
because a receding-horizon optimization is inherent to the
control method. By incorporating a measure of persistent
excitation into the objective function [14], [15], [16], the
trade-off between output regulation and excitation levels can
be managed by adjusting the relative weighting of these indi-
vidual “costs.” However, while a trade-off is unavoidable in
SISO systems, overactuated systems provide an opportunity
to circumvent this trade-off by restricting the excitation to
the “null-space” of the system. For example, in [17], [18]
the authors exploit the overactuated nature of the spacecraft
under consideration by restricting the optimized excitation
signal to the “null-motion” of craft.

This paper presents a simultaneous identification and con-
trol methodology for PMSMs by exploiting the overactuated
nature of the machine. An indirect adaptive control design
using the certainty equivalence principle is proposed in
which a “disturbance decoupling” control law is utilized
to prevent the input selected for excitation from perturbing
the regulated output. The machine parameters used in this
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excitation decoupling control law are updated via a nor-
malized gradient estimator. Simulation results for a torque
regulating controller for PMSMs confirm the effectiveness of
the proposed simultaneous identification and control design
methodology. Furthermore, while the focus of the paper is
on the application of the proposed adaptive excitation decou-
pling control methodology to PMSM torque regulation, the
prospects of generalizing this methodology for overactuated
systems are promising.

TABLE I
LIST OF NOTATION AND SPECIAL MATRICES.

Symbol Description

Electrical Variables

vrd(t) Direct-axis Voltage in Rotor Ref. Frame

vrq (t) Quadrature-axis Voltage in Rotor Ref. Frame

ird(t) Direct-axis Current in Rotor Ref. Frame

irq(t) Quadrature-axis Current in Rotor Ref. Frame

R Stator Winding Resistance

Ld Direct-axis Stator Self-Inductance

Lq Quadrature-axis Stator Self-Inductance

ΛPM Permanent Magnet Flux Linkage

Mechanical Variables

τ Three-Phase Electromagnetic Torque

ωr Rotor Angular Velocity

ωre = P
2
ωr Rotor Electrical Angular Velocity

P Number of Poles

Special Matrices

J =

[
0 −1
1 0

]
90◦ Rotation Matrix

e−Jθ Park Transform (Arbitrary Rotation Matrix)

II. FIELD-ORIENTED DYNAMIC MODEL FOR PMSMS

Field-oriented control (FOC) [19] has become the standard
approach for high-performance torque regulation in AC ma-
chines. Electrical variables, which are normally sinusoidal,
are projected into a rotating reference frame using the Park
transform [20] to obtain a simplified machine model in which
the formerly sinusoidal electrical variables are constant-DC
values at steady-state. An additional advantage is that the
torque and field generating components of electrical currents
are decoupled. The resulting field-oriented machine model
is analogous to a separately excited (field-winding) DC ma-
chine, where field-and-torque-generating electrical currents
are independently controllable.

The control design and parameter estimator presented in
this paper are designed using the standard two-phase equiv-
alent model for permanent-magnetic synchronous machines
[21]. This model, and the subsequent control design, are
derived under the following assumptions:

A1. The machine has a smooth airgap (i.e., slotting
effects are not modeled), is balanced in its con-
struction (i.e., the three-phase windings have equal

impedance) and has sinusoidally distributed wind-
ings;

A2. Core losses are neglected and a linear magnetics
model is assumed (i.e., magnetic saturation effects
are neglected);

A3. Mechanical dynamics are neglected and so rotor
velocity, ωr, is treated as a known constant;

A4. The only uncertain parameters are resistance, R,
and the direct and quadrature inductance, Ld and
Lq respectively;

A5. The machine is fed by an “ideal” Voltage Source
Inverter (VSI) and switching harmonics are ne-
glected.

The first assumption (A1) permits the use of a two-phase
equivalent model as it implies that the sum of the three-phase
stator currents is zero (i.e., ia + ib + ic = 0), and therefore
a third state is redundant. The second and third assumptions
(A2-A3) further simplify the model. In particular, since the
rotor velocity is measured, and the mechanical dynamics
associated with the rotor velocity are slow with respect to the
electrical dynamics, we treat ωre as a known constant (A3),
yielding linear time-invariant machine dynamics. We assume
that the permanent magnet flux-linkage, ΛPM , is well known
as its variation with temperature tends to be small, and
because ΛPM is easily identified offline with the “open-
circuit test”. For this reason, we assume (A4) that R, Ld
and Lq are the only uncertain parameters. Finally, by treating
the VSI as an ideal “actuator” (A5), we neglect voltage
dependencies between the commanded and actual waveforms
applied to machine, which may result from switching losses
and dead-time effect.

The dynamic model of the PMSM in the rotor reference
frame (denoted by the superscript r), in which the direct-axis
is aligned with the rotor permanent magnet flux, is given by

d

dt

[
ird

irq

]
=

[
− R
Ld

ωre
Lq

Ld

−ωre Ld

Lq
− R
Lq

][
ird

irq

]
︸ ︷︷ ︸

,f(x)

+

[
0

1
Lq

]
︸ ︷︷ ︸
,g(x)

urq +

[
1
Ld

0

]
︸ ︷︷ ︸
,p(x)

urd,

(1)
with the unmeasured nonlinear torque output mapping,

τ =
3P

4
[(Ld − Lq) ird + ΛPM ] irq︸ ︷︷ ︸

,h(x)

, (2)

where the direct and quadrature currents are the states (i.e.,
x = [ird irq]

T ) of the system and the direct and quadrature
voltage inputs to the system are assumed to include a EMF
cancellation term, i.e., vrq = urq + ΛPMωre, and vrd = urd
for consistency. In conventional terms, these equations (1)-
(2) represent an LTI system with nonlinear regulated (or
“performance”) output mapping.

III. EXCITATION DECOUPLING VIA STATE-FEEDBACK

The SIC approach presented in this paper is based upon a
certainty equivalence design in which an “excitation input
decoupling” control law is used to prevent the excitation
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input signal from perturbing the regulated output. This ex-
citation decoupling control law is derived by reformulating
the problem as a “disturbance decoupling” problem [22].

A. Statement of the Control Objective

The control inputs to the PMSM are the direct and
quadrature-axis voltages, urd and urq , and the (unmeasured)
regulated output is electromagnetic torque, τ . Thus, the
PMSM constitutes an overactuated1 system. Our control
objective is to simultaneously achieve parameter identifi-
cation and asymptotic output regulation in an overactuated
system, namely the PMSM. This is accomplished by using an
adaptive excitation (disturbance) decoupling control design
in which one input of the overactuated system is designated
as the “excitation input” used to ensure that the PMSM
dynamics are persistently excited for parameter convergence,
and the other input is used for torque output regulation. The
excitation decoupling control law ensures that the pertur-
bations in the regulated output go to zero asymptotically
as the machine parameters converge to their true values.
Once identified, the presence of the excitation signal ensures
that the parameter estimator will track any changes in the
parameters.

B. Review of Disturbance Decoupling

To apply this solution to the simultaneous identification
and control problem, we treat the excitation input as a “mea-
sured” disturbance, and derive a state-feedback controller
which decouples the excitation input from the regulated
output, provided that the system parameters are well known.
For convenience, we will first review the general solution for
a class of nonlinear systems [22] before applying the result
to the PMSM torque regulation problem.

Consider a nonlinear system of the form

Σ :

{
ẋ = f(x) + g(x)u+ p(x)w,

y = h(x),
(3)

where x ∈ Rn is the state vector, y ∈ R is the “regulated”
(or “performance”) output, u ∈ R is the input and w ∈ R is
the “disturbance” input which is to be decoupled.

Given measurements of the full state vector, x, as well as
the disturbance, w, it is possible to decouple the disturbance
from the output, y, using a state-feedback law of the form
u = α(x) + β(x)v + γ(x)w, where v is a control reference
input which will be designed to yield stable linear closed-
loop dynamics, provided that,

LpL
i
fh(x) = 0 for all 0 ≤ i ≤ ρ− 2, (4)

LpL
ρ−1
f h(x) = −LgLρ−1

f h(x)γ(x), (5)

for all x in the neighborhood of the equilibrium, xo, where
Lifh(x) denotes the ith Lie derivative of h(x) projected
along f(x) and ρ is the “relative degree” of the system, Σ.
Note that the second condition is easily satisfied by solving
for γ(x) and including the term in the feedback law. If these

1Defined here as a system in which the number of control inputs is strictly
greater than the number of regulated outputs.

conditions are satisfied for a given plant, a feedback law
which achieves disturbance decoupling, is given by:

u = −
Lρfh(x)

LgL
ρ−1
f h(x)

−
LpL

ρ−1
f h(x)

LgL
ρ−1
f h(x)

w+
v

LgL
ρ−1
f h(x)

. (6)

The design of v is best understood by considering the
system in the “normal form” [22], which is obtained by
defining new coordinates such that,

ż1 = z2

...
żρ−1 = zρ

żρ = b(ξ, η) + a(ξ, η)u+ d(ξ, η)w

η̇ = q(ξ, η) + k(ξ, η)w

y = z1

where ξ = [z1 · · · zρ]T and η = [zρ+1 · · · zn]T . Note that
the term η̇ = q(0, η) represents the “zero dynamics” of the
system, which must be stable (i.e., minimum phase) to ensure
that the closed-loop design is internally stable. In the new
coordinate system (i.e., normal form) the state-feedback law
(6) takes the form,

u = − b(ξ, η)

a(ξ, η)
− d(ξ, η)

a(ξ, η)
w +

v

a(ξ, η)
,

and the closed-loop system takes on the structure depicted
in Fig. 1, isolating the output from the disturbance input and
the system states which are influenced by the disturbance
input.

( , ) ( , )q k w     w

v z  z 2z 1z y
  

Fig. 1. Block diagram of closed-loop system after disturbance decoupling
(adapted from [22]).

With Fig. 1 in mind, our choice of the control, v, is rather
intuitive,

v = − (c0z1 + · · ·+ cρ−1zρ) + ỹ

= −
(
c0h(x) + · · ·+ cρ−1L

ρ−1
f h(x)

)
+ ỹ, (7)

where ỹ is the reference input and the coefficients
c0, · · · , cρ−1 are selected to yield the desired linear dynamics
with characteristic equation,

sρ + cρ−1s
ρ−1 + · · ·+ c1s+ c0 = 0. (8)

It should be noted that in general, the solution to the distur-
bance decoupling problem presented here, and its asymptotic
stability properties, are local results (i.e., they hold only for
a neighborhood of the equilibrium point, xo).
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C. Excitation Decoupling for PMSMs
To apply the disturbance decoupling solution to our prob-

lem, we designate the quadrature-axis voltage, urq , as the
control input, as it has the most control authority over
the torque output, and the direct-axis voltage, urd, as the
“excitation” (or “disturbance”) input to be decoupled. We
therefore treat the PMSM as a SISO system with measured
disturbance input, urd.

The relative degree of the PMSM system (1)-(2) from
either input (urd or urq) to the output, τ , is one (i.e., ρ = 1
for the PMSM), which is easily verified by differentiating
the output (2) with respect to time. Therefore, we need only
include the following feed-forward term

γ(x) =
Lq
Ld

(Ld − Lq)irq
(Ld − Lq)ird + ΛPM

in the excitation decoupling control law to ensure that
the conditions (4)-(5) are satisfied. Furthermore, since the
PMSM dynamics (1)-(2) are minimum phase, we may apply
the disturbance decoupling results from the previous section.

While our focus is on the design of the control input,
urq , in practice it is beneficial to cancel the cross coupling
term in the direct-axis dynamics as it will lead to resonant
behavior, as well as a large steady-state direct-axis current,
at high rotor velocities. Therefore, we include the following
feedback term for the direct-axis,

urd = −ωreL̂qirq + R̂ue, (9)

where ue is the “excitation input” which is scaled by the
estimated resistance so that it corresponds to the magnitude
of the steady-state direct-axis current generated by the direct-
axis command voltage. Computing the necessary Lie deriva-
tives specified in (6), we obtain the excitation decoupling
control law for PMSMs:

urq = R̂irq + ωreL̂di
r
d −

R̂

L̂d

L̂q∆̂Li
r
q

∆̂Lird + ΛPM
(ure − ird)

+
4L̂q

3P
(

∆̂Lird + ΛPM

)v, (10)

where the “hat” ( ·̂ ) designates parameters which will be
adaptively estimated and ∆̂L = L̂d − L̂q (for compactness).

Finally, we design the control input, v, in (10) as follows:

v = −λh(x) + λτ̃ , (11)

which yields the following first-order (input-output) closed-
loop dynamics,

Σcl :

{
ż = −λz + λτ̃
y = z = h(x)

(12)

where λ > 0 is a control gain which sets the closed-
loop bandwidth. Thus, the disturbance and its associated
dynamics are rendered unobservable in the output, z. Finally,
we compute the value for λ based on our desired rise-time of
2 milliseconds and the following relationship for first-order
systems [23],

λ =
1.8

tr
,

where tr is our desired rise time (i.e., tr = 2 msec).

Remark: A comprehensive stability analysis will not be
pursued in this paper. However, once parameter convergence
is obtained, which is guaranteed by the algorithm proposed
in the next section, stability of the closed-loop system will
follow from the non-adaptive disturbance decoupling control.
Therefore, for the adaptive control problem, stability can be
assured if there is no finite escape time.

IV. PARAMETER IDENTIFICATION

Estimates of the machine parameters used in the excitation
decoupling control law (10) are provided by a normalized
gradient-based algorithm. The resistance, as well as the direct
and quadrature inductances, are directly estimated by the
algorithm. A block diagram of the overall adaptive control
system is provided in Fig. 2.

A. Parameteriziation and Gradient-based Estimator
To formulate the parameter estimator, we first construct a

linear parameterization for the system model (1),

~z = ΦT ~θ, (13)

where ~z = [urd urq]
T is the “measurement” vector, ~θ =

[R Ld Lq]
T is the parameter vector, and the regressor matrix

is given by

ΦT =

[
~φTd
~φTq

]
=

[
ird

d
dt i

r
d −ωreirq

irq ωrei
r
d

d
dt i

r
q

]
.

In order to avoid direct computation of derivatives in the
regressor matrix, we filter each side of (13) by a stable first-
order filter [24], i.e.,

{M(s)}~z = {M(s)}ΦT ~θ,

where
{M(s)} =

{
Kf

s+Kf

}
is the transfer function representation of a stable first-order
filter (i.e., Kf > 0) which operates on the individual
elements of ~z and Φ.

The parameter estimates are obtained by integrating the
following expression,

˙̂
~θ = ΓΦ~ez

= Γ
[
~φd ~φq

] [ezd
ezq

]
= Γ

(
~φdezd + ~φqezq

)
(14)

where Γ = ΓT > 0 is the adaptation gain matrix and ~ez =
[ezd ezq]

T is the normalized estimator error vector, whose
entries are given by,

ezd =
urd − ~φTd ~̂θ
1 + ~φTd

~φd
, (15)

ezq =
urq − ~φTq ~̂θ
1 + ~φTq

~φq
. (16)
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a

b

c

Clarke
&

Park
Transform
(s-to-r)

vd

vq

ia

ib

ωr

θr

2
P

r
di
r
qi

θre
ωre

Inverse
Park

Transform
(r-to-s)

r
qv

r
dv

r
eu Excitation Decoupling

Control Law PWM
&

VSI

2
P

PMSM
Machine

Adaptive Estimator

ˆ
z

d e
dt
  ΓΦ
 

ˆ ˆ ˆ( , ) ( , ) ( , )r r
eu x x x u        

     


̂




Fig. 2. Block diagram of the closed-loop system with proposed adaptive excitation decoupling controller.

Finally, we note that the rows of the regressor matrix, Φ,
are scaled to ensure that the regressor is well-conditioned.
This is important as the large differences in the order-of-
magnitude between resistances and inductances will lead to
a poorly-conditioned regressor if left unscaled.

B. Sufficient Richness Analysis

To establish requirements on the excitation and control
inputs, an analysis of the linearized closed-loop system is
performed. Specifically, we will show that the control input
alone is insufficient for parameter identification, and that a
nonzero reference input (i.e., torque command) is required
as well.

Assuming that the parameters are well known2, the lin-
earized (via Taylor series expansion) closed-loop dynamics
for the PMSM (1) with feedback (10) are given by,

d

dt

[
δird

δirq

]
=

[
− R
Ld

0

A21(X,U) −λ

][
δird

δirq

]

+

 0

4λ

3P(∆LIrd+ΛPM)

 δτ̃ +

 R
Ld

− R
Ld

∆LI
r
q

∆LIrd+ΛPM

 δure,
(17)

where Ird and Irq are the steady-state (or equilibrium) values
of the direct and quadrature current respectively, Ure and
T̃ are the steady-state (or equilibrium) set-points for the
excitation and torque reference inputs respectively, and the
term,

A21(X,U) =
R

Ld

∆L

∆LIrd + ΛPM

(
IrqΛPM + ∆LI

r
qU

r
e

−λLd
R

4

3P
T̃

)
,

2Intuitively, we expect this to be the worst-case-scenario since any error
in the estimated parameters is expected to provide additional “information”
for identification.

which is a function of the equilibrium states (Ird , I
r
q ) and

inputs (Ure , T̃ ), is defined for compactness. Note that the
lower-case delta δ denotes “small” perturbations from the
equilibrium or set-point values. Inspection of (17) reveals
that the closed-loop eigenvalues are −R/Ld and −λ, as
expected. However, the mode associated with −R/Ld has
been rendered unobservable with respect to the torque output,
and so the eigenvalue at −λ determines the closed-loop
bandwidth.

While the complexity of A21(X,U) prevents us from
performing a clear analysis of how the excitation input
influences the conditioning of the regressor matrix, we are
able to compute a transfer function relationship between the
regressor elements and the reference input, δτ̃ . First, we
derive the transfer function matrix relating the input and the
states,

δ~ir(s) = (sI−A)−1Bδτ̃(s)

=
4

3P (∆LIrd + ΛPM )

[
0

λ
s+λ

]
δτ̃(s)

= cτ

[
0

λ
s+λ

]
δτ̃(s),

where cτ = 4/3P (∆LI
r
d + ΛPM ) is a constant scalar. Next,

we derive the transfer function relationship between the
elements of the regressor matrix and the reference input,

Φ = H(s)δτ̃(s) = cτ


0 λ

s+λ

0 0

−ωreλ
s+λ

sλ
s+λ

 δτ̃(s). (18)

To analyze whether or not the regressor matrix is persistently
excited under a particular input, we will use the following
theorem, adapted from [24].

Theorem: Consider the equation Φ = H(s)u where H(s) is
a proper transfer matrix with stable poles and Φ ∈ Rn×m
with m < n. Let u : R+ 7→ R be stationary and assume
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that H(jω1), ...,H(jωn) are linearly independent columns
of H(s) on Cn for all ω1, ω2, ..., ωn ∈ R, where ωi 6= ωk
for i 6= k. Then Φ is persistently exciting if, and only if, u is
sufficiently rich of order n (i.e., u contains at least n2 distinct
frequencies).

Inspection of (18) reveals that regardless of the choice of
reference input, δτ̃(s), there does not exist a set of columns
of H(jω) for which H(jω1), ...,H(jωn) are linearly in-
dependent for any ωi, with ωi 6= ωk. Therefore, because
of the row of zeros in (18) we conclude that the control
input alone is insufficient for parameter identification [24].
It should be noted that the presence of the filter, M(s) does
not affect the conclusions of this analysis3, and is therefore
neglected for simplicity. Intuitively, we expect that the direct-
axis inductance, Ld, which is associated with the second
row of the regressor matrix, will fail to converge without
additional excitation provided by the excitation input.

In addition to the need for the excitation input, a require-
ment on the reference input set-point, T̃ , is established as
well. If we consider the torque expression (2), we see that
a zero torque command implies that the quadrature current
is equal to zero at steady-state. Under this steady-state
operating condition, we have A21(X,U) = 0, considerably
simplifying our analysis. We compute the transfer function
matrix relating the excitation input to the states, assuming
that T̃ = Irq = 0,

δ~ir(s) = (sI−A)−1Bδure(s)

=
R

Ld

 1
s+ R

Ld

0

 δure(s),
and use this relationship to relate the excitation input to the
elements of the regressor matrix,

Φ = H(s)δure(s) =
R

Ld


1

s+ R
Ld

0

s
s+ R

Ld

ωre

s+ R
Ld

0 0

 δure(s). (19)

Similar to the preceding analysis, inspection of (19) reveals
that regardless of the choice of excitation input, δure(s),
there does not exist a set of columns of H(jω) for which
H(jω1), ...,H(jωn) are linearly independent for any ωi,
with ωi 6= ωk, and therefore full parameter convergence
cannot be obtained when the reference input set-point, T̃ ,
is equal to zero. In this case we expect that the quadrature-
axis inductance, Lq , which is associated with the bottom row
of the regressor matrix, will fail to converge.

To summarize, we have used the analysis of the linearized
closed-loop system presented in this section to establish the
following two conditions related to parameter convergence:

1) Perturbations in the reference input, δτ̃ , alone cannot
provide sufficient excitation for full parameter conver-
gence (i.e., we need to utilize the excitation input as
well);

3Given a persistently exciting u with u̇ bounded, and a stable, minimum
phase, proper transfer function M(s), it follows that y = M(s)u is also
persistently exciting [24].

2) A necessary condition for full parameter convergence
is that the reference input set-point T̃ 6= 0.

Taken together, these conditions suggest that if the ma-
chine parameters are identifiable, then a sufficiently rich
excitation input combined with a nonzero torque command
will achieve full parameter convergence.

V. SIMULATION RESULTS

We have validated the proposed adaptive excitation de-
coupling control methodology for SIC in Matlab/Simulink
simulations using a dynamic model of the PMSM. Parame-
ters provided in Table II were used in all simulations except
where noted otherwise.

TABLE II
SIMULATION PARAMETERS.

Description Value

Electrical Machine Parameters:

R 102.8 mΩ

Ld 212.3 µH

Ld 424.6 µH

ΛPM 12.644 mV-s

P 10

Control Design Parameters:

λ 900

Γ diag([16 80 40])

Kf 1000

ure 1.5 (sin(ωpet) + sin(0.5 · ωpet))
ωpe 363 rad/sec

Simulation Settings:

Solver ode4 (Fixed-step Runge-Kutta)

Step Size 10 µ-sec

A. Conditions for Parameter Convergence

By exploiting the overactuated nature of the PMSM, we
are able to ensure that the machine dynamics are persistently
excited, regardless of the harmonic content (i.e., “sufficient
richness”) of the reference input. Our only requirement
on the reference input for full parameter convergence is
that the torque command be nonzero, as the analysis in
the preceding section indicated. To illustrate the necessary
conditions which have been derived, Simulink simulations
are run which examine parameter convergence when the
excitation input is set to zero, and in which the torque
(control) command is set to zero.

In Fig. 3, we see that without the additional information
provided by the excitation input, ue = 0, the estimate of the
direct-axis inductance, L̂d, settles to an incorrect value, as
our analysis predicted. This scenario serves as our baseline
adaptive control design in which the overactuation in the
system is not exploited. This essentially gives us the feedback
linearization portion of the controller and a fair basis with
which to compare. Despite the rich harmonic content of
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the torque command, the estimated parameters do not fully
converge to their true values.
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Fig. 3. Simulation of closed-loop adaptive system without persistently
exciting input, leading to incomplete convergence (adaptation turned “on”
at t = 1 sec).

However, in Fig. 4 we see that when the torque com-
mand is set to zero the estimated machine parameters
again fail to converge fully to their true values, despite the
presence of a persistently exciting excitation input, ue =
1.5 (sin(ωpet) + sin(0.5 · ωpet)). As our analysis predicted,
the zero torque command results in a lack of sufficient
richness for the quadrature-axis inductance estimate, L̂q , to
converge to its true value.

B. Closed-loop Performance

The main objective in this paper is to demonstrate an adap-
tive control methodology for overactuated systems which is
capable of achieving simultaneous identification of parame-
ters and control of a regulated output. This is achieved by
exploiting the overactuated nature of a PMSM by designating
one input as an excitation input, which is designed to
ensure that the system is persistently excited for parameter
identification, and the other input as the control input used
for torque regulation.

In Fig. 3, we see that without leveraging the extra degree
of freedom resulting from overactuation (i.e., utilizing the
excitation input) the estimated parameters converge to a set
where, despite the fact that the control error goes to zero,
the estimate of Ld stagnates at an incorrect value. This is the
typical scenario for adaptive control in which the adaptation
drives the control error to zero, but due to a lack of persistent
excitation, the parameters fail to completely converge to their
true values.

However, when we use the overactuated nature of the
PMSM to our advantage, we are able to ensure that the
system is persistently excited and so all of the parameters

0 1 2 3 4
0

0.2

0.4

T
o
rq

u
e

(N
-m

)

 

 
=
=̃

0 1 2 3 4
-10

0

10

C
u
rr

en
ts

(A
)

 

 

ird irq

0 1 2 3 4
0

1

2

3̂
/
3

(-
)

time (s)

 

 

R̂/R L̂d/Ld L̂q/Lq

Fig. 4. Simulation of closed-loop adaptive system with zero torque
command input, leading to incomplete convergence (adaptation turned “on”
at t = 1 sec).
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Fig. 5. Simulation of closed-loop adaptive system at a fixed rotor velocity
of 2000 rpm with excitation input (adaptation turned “on” at t = 1 sec).

converge to their true values. Inspection of the results in
Fig. 5 confirm that the closed-loop system performs very
well, with torque perturbations due to the excitation input
vanishing as the estimated parameters converge to their true
values.

Finally, to demonstrate that the closed-loop adaptive ex-
citation decoupling controller does exhibit robustness to
uncertainty as well, simulations are run which include zero-
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Fig. 6. Simulation of closed-loop adaptive system at a fixed rotor
velocity of 2000 rpm with zero-mean Gaussian noise added to the current
measurements.

mean Gaussian noise on the stator current measurements.
Inspection of these results, presented in Fig. 6, indicate that
despite the presence of measurement noise, the parameters
converge to their true values. It should be noted that in
practice limiting the bandwidth of the bandwidth of the
adaptive estimator will improve performance in presence of
measurement noise. Additionally, while the simulations pre-
sented here do not include any robustness modification to the
adaptive update law (14), in an experimental implementation,
the addition of a robustness modification such as a switching-
sigma or projection is advised [24].

VI. CONCLUSION

This paper presented a simultaneous identification and
control methodology for PMSMs which exploits the over-
actuated nature of the machine. An indirect adaptive con-
trol design using the certainty equivalence principle was
developed in which a “disturbance decoupling” control law
is utilized. The machine parameters used in this excitation
decoupling control law are updated via a normalized gradient
estimator, and analysis of the linearized closed-loop system
established necessary conditions for full parameter conver-
gence. Simulation results confirm the effectiveness of the
proposed SIC design methodology. Finally, while the focus
of the paper is on the application of the proposed adaptive
excitation decoupling control methodology to PMSM torque
regulation, the prospects of generalizing this methodology
for overactuated systems are promising.
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