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Abstract— Output regulation and the identification of plant
parameters are generally conflicting objectives. However, over-
actuated systems provide an opportunity to achieve identifica-
tion and control objectives simultaneously, with minimal com-
promise. This paper presents an optimization-based simultane-
ous identification and control (SIC) methodology for permanent
magnet synchronous machines (PMSMs) which exploits the
over-actuated nature of the machine. A receding horizon control
allocation (RHCA) approach is used which includes a metric
for maximizing the excitation characteristics of the generated
reference current trajectories. The reference currents produced
by the RHCA are fed to a lower-level adaptive current regulator
which ensures asymptotic tracking of a reference model. The
importance of reformulating the RHCA problem to include past
input and state data, in addition to predicting future input and
state trajectories, is discussed. Simulation results demonstrating
the effectiveness of the proposed RHCA-SIC methodology, as
well as the effects of neglecting past input and state data, are
presented.

I. INTRODUCTION

Output regulation and the identification of plant parame-
ters are generally conflicting objectives, necessitating a trade-
off between ensuring that control inputs are persistently
exciting for parameter identification, and minimizing the
regulated output error. This trade-off between identification
and control makes optimization-based design methodologies
a natural choice for Simultaneous Identification and Control
(SIC). Model Predictive Control (MPC) [1], which has seen a
rapid growth in popularity in recent years, provides a natural
platform for SIC due in part to its inherent optimization and
constraint handling. In the MPC framework, a metric for
excitation is incorporated into the optimization to encourage
the generation of persistently exciting control signals [2]–[7].
The trade-off between identification and control may then be
managed by tuning the weighting (or penalties) placed on
excitation and regulation metrics.

While a trade-off must be made between identification and
control in designs for SISO systems, over-actuated systems
provide an opportunity to achieve identification and control
objectives simultaneously, with minimal (if any) compro-
mise. For example, the authors of [8], [9] exploit over-
actuation in a spacecraft with a redundant reaction wheel,
restricting excitation to the “null-motion” of craft. Similarly,
in [10] the authors take advantage of over-actuation in

David M. Reed and Heath F. Hofmann are with the department of
Electrical Engineering and Computer Science and Jing Sun is with the
department of Naval Architecture and Marine Engineering at the University
of Michigan, Ann Arbor, MI 48109 USA (e-mail: davereed@umich.edu;
jingsun@umich.edu; hofmann@umich.edu.

This work was sponsored by the U.S. Office of Naval Research (ONR)
under Grant No. 00014-11-1-0831.

an electric vehicle with in-wheel motors to improve the
identification of the tire-road coefficient of friction. In this
paper, we consider torque regulation for permanent magnet
synchronous machines (PMSMs), which constitutes an over-
actuated problem as there are multiple inputs (i.e., direct and
quadrature-axis voltages) and a single regulated output (i.e.,
torque).

Interest in electric and hybrid vehicles, as well as induction
machine replacement in industrial settings, has driven a rise
in the popularity of PMSMs, due to their high efficiency
and torque density. While easier to control than induction
machines, PMSM controllers still suffer performance degra-
dation due to variations in machine parameters, particularly
in high-performance applications. Temperature changes, skin
effect, and magnetic saturation all contribute to variations in
the machine parameters. The stator resistance may increase
by as much as 100% [11], primarily due to temperature vari-
ations, but also skin effect when high electrical frequencies
are involved1. While variations in the stator resistance can
be compensated without the use of parameter estimation,
variations in the magnetic parameters (i.e., inductances and
permanent magnet flux linkage) will have a direct impact
on torque production. Since the torque is not measured,
these variations can only be compensated by updating the
parameter values in the torque control algorithm. A variety of
strategies for compensating parameter variations in PMSMs
have been proposed in the literature [12]–[21]. However, only
[20], [21] specifically consider the SIC problem and over-
actuation in the proposed control designs.

Previous work [20], [21] explored more traditional con-
trol designs for achieving SIC in PMSMs with emphasis
on exploiting over-actuation. In this paper, we present an
optimization-based simultaneous identification and control
methodology for permanent magnet synchronous machines
which exploits the over-actuated nature of the machine. A
receding horizon control allocation (RHCA) is used which
includes a metric for maximizing the excitation character-
istics of the generated reference current trajectories. The
reference currents produced by the RHCA are fed to a lower-
level adaptive current regulator which ensures asymptotic
tracking of a reference model. After reviewing the PMSM
dynamics and our control objectives, we discuss the proposed
control architecture and introduce the (static) control alloca-
tion problem for PMSM torque regulation. Metrics for opti-
mizing the conditioning of the Fisher information matrix and

1Typically encountered in high speed applications and when using ma-
chines with a high number of poles.
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their application to generating persistently exciting inputs
are then discussed, as well as the necessary modifications
to the control allocation problem, needed for excitation
maximization, which lead to the RHCA formulation. Finally,
the crucial role of past input and state data in the RHCA-SIC
algorithm is discussed, and simulation results demonstrating
the effectiveness of the methodology, as well as the need for
past data, are presented.

TABLE I
LIST OF COMMON NOTATION.

Symbol Description

Electrical Variables

vrd(t) Direct-axis Voltage in Rotor Ref. Frame

vrq (t) Quadrature-axis Voltage in Rotor Ref. Frame

ird(t) Direct-axis Current in Rotor Ref. Frame

irq(t) Quadrature-axis Current in Rotor Ref. Frame

R Stator Winding Resistance

Ld Direct-axis Stator Self-Inductance

Lq Quadrature-axis Stator Self-Inductance

ΛPM Permanent Magnet Flux Linkage

Mechanical Variables

τ Three-Phase Electromagnetic Torque

ωr Rotor Angular Velocity

ωre = P
2
ωr Rotor Electrical Angular Velocity

P Number of Poles

Special Matrices

I Identity Matrix

0 Zero Matrix

II. PLANT DYNAMICS AND CONTROL OBJECTIVES

A. Two-phase Equivalent Model of PMSM

The standard two-phase equivalent model for permanent-
magnet synchronous machines [22] is given by

Σ :

{
~̇ir = A(t, ~θ)~ir + B(~θ)~vr − ~d(t, ~θ),

τ = h(~ir, ~θ),
(1)

with,

A(t, ~θ) =

[
− R
Ld

ωre(t)
Lq

Ld

−ωre(t)Ld

Lq
− R
Lq

]
,B(~θ) =

[ 1
Ld

0

0 1
Lq

]
,

~d(t, ~θ) =

[
0

ωre(t)ΛPM

]
,

where ~ir = [ird i
r
q]
T is the state vector, ~vr = [vrd v

r
q ]
T is

the input vector, ~θ = [R Ld Lq ΛPM ]T is the parameter
vector, and the unmeasured nonlinear torque output mapping
is given by

h(~ir, ~θ) =
3P

4
[(Ld − Lq) ird + ΛPM ] irq. (2)

Additionally, we note that the superscript “r” identifies
signals which are expressed in the rotor reference-frame, and

in which the direct-axis is aligned with the permanent magnet
flux. Furthermore, we treat the rotor electrical velocity,
ωre(t), as a known (i.e., measured) time-varying exogenous
signal. Finally, we note that, under torque regulation, the
PMSM plant (1)-(2) constitutes an over-actuated system
with two inputs, vrd and vrq , and a single output, τ , to be
regulated, for which the full state, ird and irq , is available for
measurement.

B. Statement of the Control Objectives

As it concerns the work presented in this paper, the
term “Simultaneous Identification and Control” or “SIC”
refers specifically to control methodologies which ensure that
inputs to the plant under control are persistently exciting
while also simultaneously achieving control objectives such
as output regulation. This is to distinguish the work presented
herein from standard adaptive control designs which estimate
parameters online, but do not guarantee or require parameter
convergence, as well as techniques which simply inject a
perturbation to provide excitation without special effort to
minimize the perturbation’s impact on the regulated output.

Accurate parameter knowledge is sometimes desirable for
secondary objectives such as condition monitoring, or simply
to guarantee that transient specifications are maintained.
While there are many advantages to ensuring that inputs are
persistently exciting, identification and control are conflicting
objectives in the sense that the persistently exciting signals
push the system away from the equilibrium point which
the control is trying to maintain. However, in the case of
over-actuated systems, the input which generates a particular
desired output is not unique. This provides an opportunity
to simultaneously achieve both identification and control
objectives with minimal (if any) compromise, by restricting
the excitation to the “null space”.

In this paper, we will explore a receding horizon control al-
location (RHCA) approach to the simultaneous identification
and control (SIC) of an over-actuated plant (i.e., PMSMs)
with the specific control objectives:

1) Identification of electrical machine parameters;
2) Accurate PMSM torque regulation.

III. PROPOSED CONTROL ARCHITECTURE

The proposed RHCA-SIC design utilizes a two-level struc-
ture with reference signals generated by the RHCA being fed
to the inner-loop adaptive current regulator, as depicted in
Figure 1. The adaptive current regulator ensures fast, accurate
tracking of the filtered2 reference current trajectories, while
the “outer-loop” RHCA exploits the over-actuated nature of
the PMSM to generate reference currents which are both
persistently exciting and produce the desired torque.

A. Inner-loop Controller

The inner-loop controller is a Lyapunov-based adaptive
current regulator [20] which has been extended to include
PMSMs (i.e., magnetic saliency is considered). The adaptive

2By the reference models, M(s) = λ
s+λ

.
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Fig. 1. Block diagram of the proposed RHCA-SIC methodology for PMSM torque regulation.

current regulator ensures that the 2-phase equivalent stator
currents asymptotically converge to track the trajectories
produced by the reference models. We define the direct and
quadrature stator current errors as follows:

erid = ĩrd − ird,
eriq = ĩrq − irq,

(3)

where the “tilde” ( ·̃ ) denotes filtered reference signals, i.e.,
the output of M(s).

The control law for our adaptive current regulator uses a
mix of feedforward, feedback decoupling, and proportional
feedback terms, and is given by

vrd = R̂ĩrd + L̂d
dĩrd
dt
− ωreL̂qirq +Kpde

r
id,

vrq = R̂ĩrq + L̂q
dĩrq
dt

+ ωreL̂di
r
d +Kpqe

r
iq + ωreΛ̂PM ,

(4)

where the “hat” ( ·̂ ) denotes estimated parameters, Kpd

and Kpq are the respective direct and quadrature-axis pro-
portional gains, and the derivative terms are produced by
the reference model (i.e., ~̃ir = {M(s)}~ir∗ and d

dt
~̃ir =

{sM(s)}~ir∗, where M(s) is a a stable, minimum phase,
proper, unity dc gain, first-order transfer function3).

The estimated parameters in (4) are updated via the
following adaptive parameter update law

˙̂
~θ = ΓΦ~e ri , (5)

where Γ = ΓT > 0 is the adaptation gain matrix, ~e ri =[
erid eriq

]T
is the stator current error vector, and the regressor

3{·} denotes a dynamic operator with transfer function “·”.

matrix, Φ, is given by

Φ =


ĩrd ĩrq
d
dt ĩ

r
d ωrei

r
d

−ωreirq d
dt ĩ

r
q

0 ωre

 . (6)

It can be shown, using Barbalat’s lemma [23] and the
following Lyapunov function

V (~e ri , ~eθ) =
1

2

(
~e rTi L~e ri + ~e T

θ Γ−1~eθ
)
, (7)

that the control law (4) with adaptive update (5) renders the
PMSM dynamics (1) stable in the sense of Lyapunov with
~e ri → 0 as t → ∞, where L = diag [Ld, Lq] is a diagonal
matrix of the direct and quadrature axis self-inductances,
and ~eTθ = [R Ld Lq ΛPM ] −

[
R̂ L̂d L̂q Λ̂PM

]
is the

parameter error vector. Convergence of the parameter error
follows when the regressor matrix (6) is persistently exciting.
Lastly, we note that a “switching σ-modification” [24] is used
on (5) for robustness.

B. Control Allocation

The primary objective in any control allocation problem
is to find the “best” distribution of control effort among
multiple actuators to achieve a desired effect (e.g., generate
a “virtual” control input which achieves the desired output).
Additionally, by solving the problem online, the effects of
actuator saturation and failures can be taken into account.
Control allocation is particularly well suited to over-actuated
problems which permit the inclusion of secondary objectives,
such as control effort minimization.

Typically, the control allocation problem is treated as
a static optimization problem, assuming that the “actua-
tor” response is instantaneous [25], [26]. As it concerns
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machine with large saliency (to magnify nonlinearity).

torque control for the (over-actuated) PMSM, the control
allocation problem consists of finding a reference current
pair, (ir∗d , i

r∗
q ), which produce a desired torque, τ∗. The

inner-loop controller, discussed in the previous subsection, is
then tasked with producing the voltage pair, (vrd, v

r
q), which

generates these reference currents. Since the problem is over-
actuated, there exist an infinite number of reference currents
which yield a given torque. The reference current solution
set for some τ∗ is described by all pairs (ir∗d , i

r∗
q ) ∈ M :=

{(ir∗d , ir∗q ) : |τ∗−h(~ir∗, ~θ)| = 0}, and are depicted in Figure
2. In discrete-time, the static control allocation problem for
a torque regulated PMSM can be stated as

min
~ir∗k

~ir∗Tk R~ir∗k

s.t. |~ir∗k | ≤ Imax,

|τ∗k − h(~ir∗k ,
~̂θk)| = 0,

(8)

where our secondary objective is the standard weighted
quadratic function of the reference input with R > 0,
which minimizes the control effort, and therefore, the ohmic
losses as well. While this problem formulation is sufficient
for torque regulation, it doesn’t ensure persistently exciting
reference currents without varying the commanded torque. In
the next section, we discuss metrics for persistent excitation
and their inclusion in the control allocation problem.

IV. RECEDING HORIZON CONTROL ALLOCATION FOR
SIMULTANEOUS IDENTIFICATION AND CONTROL

To ensure that the reference currents generated by the
control allocation are persistently exciting, we seek a metric
which will provide a measure of how persistently exciting the
regressor matrix (6) is over some time interval. Such a metric
will then be included in the objective (or cost) function of
the control allocation problem to encourage the generation
of reference signals which are persistently exciting.

A. The Fisher Information Matrix and Persistent Excitation

The identification of parametric models is of interest to a
wide variety of disciplines, well beyond that of the control

community. In statistics, as well as other fields, the condi-
tioning of the Fisher information matrix is used to judge how
informative an experiment (i.e., its data) is with respect to the
identification of a given parametric model. Mathematically,
given N discrete observations (i.e., measurements) of a
single output4, y(tk), at time tk with k ∈ [1 · · ·N ], of some
process described by

y(tk) = H(t, ~θ), (9)

the Fisher information matrix is defined as

F =

N∑
k=1

(
∂y(tk)

∂~θ

)T (
∂y(tk)

∂~θ

)
, (10)

where ~θ is the parameter vector we are interested in identify-
ing. Note that F is a symmetric positive-semidefinite matrix.
When Gaussian noise is considered in the estimation problem
formulation, F−1 gives the Cramer-Rao lower bound on the
achievable covariance of an unbiased estimator. Clearly, if
the experiments are not informative, the Fisher information
matrix (10) will be poorly conditioned leading to high
uncertainty in the parameter estimates.

To provide a measure of the conditioning of the Fisher
information matrix, generally for the purpose of “optimal
experiment design”, the determinant of F is often used
(sometimes referred to as “D-optimality”) [27], i.e.,

JD = det (F) . (11)

However, JD is not a concave function, and so using it
for optimal experiment design could lead to sub-optimal
solutions given by local maxima. A better choice for the
objective function is given by

JD = log (det (F)) , (12)

which has an equivalent maximum to (11), but is non-
negative concave [27], [28].

For processes described by a linear parameterization, e.g.,

y(tk) = ~φT (t)~θ, (13)

the Fisher information matrix (10) simplifies to the familiar
form used when defining persistent excitation

F =

N∑
k=1

~φ(tk)~φT (tk), (14)

where ~φ(tk) is the regressor vector. In discrete-time, a
bounded vector signal ~φ(tk) is said to be persistently exciting
(PE) if there exists N > 0 and α0 > 0 such that

F =

N∑
k=1

~φ(tk)~φT (tk) ≥ α0I (15)

for all tk ≥ t0 [29].

4The extension to multiple outputs is trivial.
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B. Receding Horizon Control Allocation for Simultaneous
Identification and Control

Since the Fisher information matrix (10) becomes singular
when evaluated at any given time instant, the addition of a
metric for persistent excitation requires modifying the control
allocation problem (8) to consider a finite time horizon
in the optimization, making a receding horizon (or MPC)
framework a natural choice. In the past, researchers have
proposed receding horizon control allocation (or MPCA)
approaches to account for actuator dynamics, e.g., [30], [31].
In this work, we will utilize the receding horizon control
allocation (RHCA) framework to accommodate the addition
of the persistent excitation metric (12).

Implementation of a RHCA requires a dynamic model of
the inner-loop system to predict future state trajectories and
evaluate the regressor matrix for optimization. The prediction
model is formulated using the certainty equivalence princi-
ple, that is, assuming that the estimated parameters are equal
to their true values. This turns out to be a minor assumption,
however, because we are assured, that as long as the system is
persistently excited, the estimated parameters will converge
to their true values. Augmenting the reference filter states,
~̃ir, with the PMSM states, ~ir, the inner-loop dynamics for
prediction are therefore given by

~̇x = Ā(~̂θ)~x+ B̄~ir∗,

~z = C̄~x+ D̄~ir∗,
(16)

with,

Ā(~̂θ) =

−(R̂I + Kp

)
L̂−1

(
R̂I + Kp

)
L̂−1 − λI

0 −λI

 ,
B̄ = λ

[
I
I

]
, C̄ = −λ [0 I] , D̄ = λI,

where ~x = [~irT ~̃irT ]T is the augmented state vector, ~z =
d
dt
~̃ir is needed to evaluate the regressor matrix, and so we

treat it as an output of the prediction model, and λ > 0 sets
the bandwidth of the (first-order) reference model filters. For
the discrete-time implementation, the prediction model (16)
is discretized using a zero-order hold.

Since the reference currents, ~ir∗, have no effect on the
estimation of the permanent magnet flux linkage5, ΛPM , we
do not include the bottom row of the regressor matrix (6),
which corresponds to the ΛPM term, in our optimization.
We define the truncated regressor matrix as

Φ̄(~x, ~z) =

 ĩrd ĩrq
d
dt ĩ

r
d ωrei

r
d

−ωreirq d
dt ĩ

r
q

 . (17)

Assuming the estimated parameters, ~̂θk, torque reference, τ∗k ,
and rotor electrical velocity, ωre,k, to all be constant over the

5It can be shown that identification of ΛPM only requires a non-zero
rotor velocity, i.e., ωre 6= 0.

prediction horizon, the extension of (8) to include a metric
(12) for persistent excitation is given by

min
~ir∗j

k+N−1∑
j=k

~ir∗Tj R~ir∗j − ρ log det (F(~x, ~z))

s.t. ~xj+1 = Ā(~̂θk)~xj + B̄~ir∗j ,

~zj = C̄~xj + D̄~ir∗j ,

F(~x, ~z) =

k+N−1∑
j=k

Φ̄(~xj , ~zj)Φ̄
T (~xj , ~zj),

|~ir∗j | ≤ Imax, ∀ j ∈ [k · · · k +N − 1],

|τ∗k − h(~ir∗j ,
~̂θk)| ≤ ε, ∀ j ∈ [k · · · k +N − 1],

(18)

where R ≥ 0 is the input weighting matrix, ρ ≥ 0 is the
PE metric weighting, and ε > 0 determines the maximum
allowable perturbation in the regulated torque output. While
the constraint on the regulated output error could be included
in the objective function and penalized6, the over-actuated
nature of our problem permits the use of it as a constraint7.
We do, however, include it here as a “relaxed” (i.e., inequal-
ity) constraint to speed up the numerical optimization, help
ensure that a feasible solution exists, and allow for small
perturbations in regulated output if it will aid the parameter
identification.

C. The Crucial Role of Past Input and State Data

Past Future

Fig. 3. Disregard for past input (and state) data leading to a lack of
persistent excitation.

To highlight the importance of incorporating recent past
input and state data in the calculation of the Fisher informa-
tion matrix for maximizing excitation in the receding horizon
framework, imagine conditions are such that the optimal
predicted input trajectory is the same at every subsequent
time step. In the receding horizon (or MPC) framework, only
the first step of the optimal sequence is applied at any given
time step. So while the optimal predicted sequence may be
persistently exciting, the actual sequence applied to the sys-
tem is very much not persistently exciting. This is depicted

6This approach was briefly investigated in numerical simulations, but
was found to require very large penalties to achieve reasonable tracking
performance which could lead to numerical conditioning issues.

7Since we know that, under normal operating conditions, solutions
satisfying |τ∗k − h(~ir∗k+i,

~̂θk)| ≤ ε exist.
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graphically in Figure 3. When past data is considered, it
is clear that the first time step in each subsequent optimal
sequence, which will be applied to the system, must differ
from the previous to ensure that persistently exciting inputs
are indeed generated.

With this issue in mind, we modify the RHCA problem
proposed in (18) to include Np points of recent (past) data
(i.e., the last Np values of the states and inputs) in addition
to the usual prediction horizon, Nf :

min
~ir∗j

k+Nf−1∑
j=k

~ir∗Tj R~ir∗j − ρ log det (F(~x, ~z))

s.t. ~xj+1 = Ā(~̂θk)~xj + B̄~ir∗j ,

~zj = C̄~xj + D̄~ir∗j ,

F(~x, ~z) =

k+Nf−1∑
j=k−Np

Φ̄(~xj , ~zj)Φ̄
T (~xj , ~zj),

|~ir∗j | ≤ Imax, ∀ j ∈ [k · · · k +Nf − 1],

|τ∗k − h(~ir∗j ,
~̂θk)| ≤ ε, ∀ j ∈ [k · · · k +Nf − 1].

(19)

The change is subtle, but the effects are profound, as will be
demonstrated in the simulation results to follow.

Finally, to reduce the dimension of the numerical opti-
mization problem, a linear B-spline is used to approximate
the control input [7]. For the purpose of trajectory optimiza-
tion, the reference currents on the time interval tk ∈ [0, T ]
are given by

ir∗d,q(tk) =

J∑
j=0

αjB (t̄k) , (20)

where t̄k is the normalized time sequence, given by

t̄k =
tk
T

J − 1

2
− j − 1

2
,

and B(t̄k) are the triangular basis functions,

B(t̄k) =

{
1− 2|t̄k| for |t̄k| ≤ 0.5,

0 otherwise,

which are precomputed and stored in memory. Thus, we
optimize over a vector of the weighting coefficients, αj ,
rather than the full resolution time sequence.

Note that a sufficient number of “knot” points (i.e., suffi-
ciently large J) must be used with respect to the length of
the time interval, T , to ensure that signals are approximated
with sufficient fidelity. The advantages of using a linear
spline are that constraints can be enforced simply by looking
at the weighting coefficients, αj , which give the signal
value at the knot points8 and a reduction in the dimension
of the optimization problem, speeding up the numerical
optimization.

8Higher-order polynomial basis functions can lead to “peaking” and
constraint violation.

V. SIMULATION RESULTS

Numerical simulations using Matlab/Simulink are used to
verify the effectiveness of the proposed receding horizon
control allocation methodology for SIC of PMSMs. The
simulations capture the sampled-data nature of a practical
implementation by implementing the controller in a triggered
subsystem which runs at 8 kHz for the inner-loop (high-
bandwidth) adaptive current regulator and a quarter of that
(i.e., 2 kHz) for the RHCA, while the machine dynamics
are solved using ode45. An ideal “average-value” inverter
model is assumed, that is, the voltage commands generated
by the controller are fed directly into the PMSM model. The
optimization problem is solved using the active-set algorithm
in fmincon, and the simulation parameters in Table II were
used in all simulations except where otherwise noted.

TABLE II
SIMULATION PARAMETERS.

Description Value

Electrical Machine Parameters:

R 109 mΩ

Ld 192 µH

Lq 212 µH

ΛPM 12.579 mV-s

P 10

Control Design Parameters:

Kpd,Kpq 0.2

Γ diag([30 30 30 30])

λ 225

R 0.1 · I
ρ 10

Prediction Horizon, Nf 25

No. of Recent Data Points, Np 25

Simulation Settings:

Solver ode45

Max Step Size 25 µ-sec

A. Static Control Allocation

For completeness, simulation results for the static control
allocation problem (8) are provided in Figure 4. Inspection
of the results in Fig. 4 reveals that, without a metric for
excitation, the control allocation algorithm is simply trying
to track the desired torque command using a minimal amount
of control effort. Thus, the commanded direct-axis current is
essentially zero for the entirety of the simulation, correspond-
ing to a minimal current magnitude operating point. The
lack of excitation leads to slow parameter convergence, since
excitation is only provided by the step changes in torque.
Additionally, the lack of accurate parameter knowledge leads
to a small but undesirable overshoot in the transient torque
responses (see “zoomed” plots in Fig. 4). Finally, the steady-
state tracking is expected given that the magnetic parameters
more or less converge to their true values, and the inner-loop

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 American Control Conference.
Received September 28, 2015.



0 0.2 0.4 0.6 0.8 1
-0.1

0
0.1
0.2

T
o
rq

u
e

(N
-m

)

 

 

=
=̃

0.36 0.38 0.4 0.42 0.44

-0.1

0

0.1

Z
o
o
m

ed

0.48 0.5 0.52 0.54 0.56

-0.1

0

0.1

0 0.2 0.4 0.6 0.8 1
-5

0

5

C
u
rr

en
ts

(A
)

 

 

ird irq |Imax|

0 0.2 0.4 0.6 0.8 1
0

1

2

3

3̂
/3

(-
)

time (s)

 

 R̂/R L̂d/Ld L̂q/Lq $̂PM/$PM

Fig. 4. Simulation of the static control allocation (8) without PE
maximization.

controller is designed to guarantee asymptotic convergence
of the stator current error regardless of the accuracy of the
parameter estimates.

B. RHCA-SIC without Past Input and State Data

For completeness, simulation results for the RHCA-SIC
problem formulation when past input and state data is
disregarded (18) are provided in Figure 5. Inspection of the
results in Fig. 5 reveals that, while the controller does do a
good job of tracking the desired torque, the RHCA algorithm
fails to generate persistently exciting signals. The lack of
persistently exciting inputs once again leads to parameter
stagnation.

C. RHCA-SIC with Past Input and State Data

When past input and state data are included in the RHCA
(19), we see that all of the parameters converge to their true
values, as the simulation results in Figure 6 demonstrate.
Inspection of the results in Fig. 6 reveals that, not only does
the PE metric with past data generate persistently exciting
reference currents, but the overall RHCA-SIC strategy takes
advantage of the over-actuated nature of the plant by utilizing
the direct-axis current, which has a small impact on the
torque production, for the majority of the excitation. Mean-
while, the quadrature-axis current is primarily used to satisfy
the torque regulation (i.e., control) objective, agreeing with
our intuition about the SIC problem for PMSMs [20], [21].
Note that while the torque output is initially perturbed by
the additional excitation, this perturbation vanishes asymp-
totically as the parameter estimates converge to their true
values. This happens because accurate parameter knowledge
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Fig. 5. Simulation of the RHCA with PE maximization and without past
input and state data (18).

is needed in order to accurately define the set M in which
the states may vary. Additionally, the losses incurred due
to the excitation may be reduced by increasing the penalty,
R, accordingly. Lastly, we note that a distinct advantage of
the proposed optimization-based RHCA-SIC methodology is
that it can easily handle other plants where the allocation
strategy for SIC is not so intuitive.
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Fig. 6. Simulation of the proposed RHCA-SIC methodology for over-
actuated systems with PE maximization and past data (19).
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VI. CONCLUSION

In this paper, we have presented an optimization-based
simultaneous identification and control methodology for
PMSMs which exploits the over-actuated nature of the
machine. A receding horizon control allocation (RHCA)
framework is used which includes a metric for maximizing
the excitation characteristics of the generated reference cur-
rent trajectories. The RHCA feeds the computed reference
currents to a lower-level adaptive current regulator which
ensures asymptotic tracking of a reference model. The impor-
tance of including past input and state data in the RHCA-SIC
algorithm is discussed, and simulation results demonstrating
the effectiveness of the proposed RHCA-SIC methodology
with past input and state data are presented, as well as
scenarios without PE maximization and which disregard past
data.

REFERENCES

[1] J. Maciejowski, Predictive Control: With Constraints. Pearson Edu-
cation, Prentice Hall, 2002.

[2] H. Genceli and M. Nikolaou, “New approach to constrained predic-
tive control with simultaneous model identification,” AIChE Journal,
vol. 42, no. 10, pp. 2857–2868, 1996.

[3] G. Marafioti, R. Bitmead, and M. Hovd, “Persistently exciting model
predictive control using fir models,” in International Conference
Cybernetics and Informatics, 2010.
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