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Abstract—This paper presents an experimentally-verified,
Lyapunov-based adaptive control design for permanent mag-
net synchronous AC machines which exploits overactuation to
achieve parameter identification and torque regulation objectives
simultaneously. This is achieved by regulating the states of the
system (i.e., the stator currents) to the output error-zeroing
manifold, along which they are varied to provide excitation
for parameter identification. The proposed control law utilizes
a combination of adaptively-tuned feedforward and feedback
decoupling terms, in addition to proportional feedback, to achieve
reference current tracking in the presence of parameter uncer-
tainty. A switching-sigma modification to the adaptive update
law is used to ensure robust stability of the closed-loop adaptive
system, and excitation for parameter estimation is introduced via
the direct-axis current reference input. The resulting controller
achieves the simultaneous identification and control objective
while providing consistent transient response characteristics with
zero steady-state error over a wide range of operating points.

Index Terms—Adaptive Control, Synchronous Motor Drives,
Overactuated Systems, Simultaneous Identification and Control.

I. INTRODUCTION

Parameter identification and output regulation are often
conflicting objectives, with identification requiring persistently
exciting inputs [1] that are rich in harmonics for parameter
convergence, while output regulation objectives typically in-
volve tracking a set-point or reference trajectory which does
not generate persistently exciting inputs. This trade-off be-
tween parameter identification and output regulation objectives
makes optimization-based approaches a natural framework for
Simultaneous Identification and Control (SIC) methodologies.
The “dual control” problem, proposed by Feldbaum in 1960
[2], casts the SIC objective as a stochastic optimal control
problem which trades-off minimization of the regulated output
error and parameter uncertainty. However, analysis of the dual
control problem requires nonlinear stochastic control theory
and solutions are difficult, if not impossible, to obtain for
all but simple problems [3]. Because of this limitation, there
has been a lot of interest in finding approximate (or sub-
optimal) approaches to achieving the dual control objective. In
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particular, Model Predictive Control (MPC) has been explored
as a framework for SIC [4], [5], [6], [7], [8]. While a trade-
off is unavoidable for most systems, overactuated1 systems
provide an opportunity to introduce excitation for parameter
identification in such a way that it does not perturb regulated
outputs. For example, in [9], [10] the authors exploit the “null
motion” of an overactuated spacecraft to introduce excitation
for parameter identification without disturbing the control
objective. Similarly, in [11] overactuation in an experimental
electric vehicle is leveraged to provide additional excitation
for accurate tire-road friction coefficient estimation.

Permanent Magnet Synchronous Machines (PMSMs),
which include both Surface Mount Permanent Magnet
(SMPM) and Interior Permanent Magnet (IPM) rotor config-
urations, are an example of an overactuated system in that
there are two inputs, the direct and quadrature-axis voltages,
for a single regulated output (i.e., torque for the purposes of
this paper). These machines have become a popular choice
for many drive applications due to their high torque density
and potential for high efficiency. However, variations in the
machine parameters due to temperature changes, skin effect,
and saturation can detune the transient characteristics of the
drive and cause significant steady-state errors in regulated
torque [12]. Temperature variations primarily impact the stator
resistance, which can increase by as much as 100% [12], and,
to a lesser degree, the permanent magnet flux, which has a
negative temperature coefficient of around 0.1% per ◦C for
neodymium (NdFeB) magnets [13]. In addition to variations
with temperature, in the case of high-pole-pair designs and
high-speed applications, the electrical frequencies in the stator
can reach levels where skin effect begins to cause a noticeable
increase in stator resistance.

A wide variety of approaches have been proposed by
researchers over the years to address the issue of param-
eter variation in Permanent Magnet Synchronous Machines
(PMSMs). In [14], a nonlinear adaptive controller which
achieves asymptotic position tracking using full-state feedback
(i.e., current, speed, and position measurements) is presented
for SMPM machines, while the approaches presented in [15]
and [16] address the position tracking problem when a velocity
measurement isn’t available (i.e., using only current and po-
sition measurements). Adaptive control techniques have even
been employed to estimate parameters for extended machine

1Overactuated systems, in the context of this paper, are systems in which
the number of inputs is greater than the number of outputs to be controlled.
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models with the goal of minimizing torque ripple in PMSMs
[17]. Least Square Estimators (LSEs) have been designed for
the purpose of estimating machine parameters online in both
closed-loop [18], [19] and open-loop [20], [21] configurations.
The approach presented in [18] divides the estimation task
into a “fast” LSE for the inductances and a separate “slow”
LSE for resistance and torque constant, which are functions of
slow thermal variations. In [22], the author uses the gradient
(steepest descent) algorithm to adaptively estimate parame-
ter variations, which are modeled as lumped time-varying
disturbances. The use of artificial neural networks has been
explored as well [23]. Still, Lyapunov-based designs are an
attractive approach as they provide some stability assurances
as part of the design process [24], [25]. To avoid some of
the complexity associated with parameter estimation based
on dynamic models, the authors of [26] and [27] develop
their parameter estimators using steady-state machine models.
These methods, however, do not specifically consider the
Simultaneous Identification and Control (SIC) objective; that
is, designs which ensure that inputs to the plant are persistently
exciting while minimizing the impact of the excitation on the
regulated output(s).

This paper presents an experimentally-verified, Lyapunov-
based adaptive control design for permanent magnet syn-
chronous AC machines which exploits overactuation to
achieve parameter identification and torque regulation objec-
tives simultaneously. We begin by discussing the simultaneous
identification and control objective, and the proposed method
of regulating states to the output error-zeroing manifold in the
context of torque regulation for PMSMs. After reviewing the
dynamic PMSM machine model, the derivation and stability
proof for the proposed Lyapunov-based adaptive controller is
presented. The adaptively-tuned control law utilizes a com-
bination of feedforward and feedback decoupling terms, in
addition to proportional feedback, to achieve reference current
tracking in the presence of parameter uncertainty. Excita-
tion for parameter estimation is introduced via the direct-
axis current reference input. Conditions necessary and suffi-
cient for parameter convergence are discussed, and simulation
results verifying the performance of the control design in
both ideal and practical scenarios are presented. Challenges
which are encountered in experimental implementations are
discussed, along with experimental results obtained for a 250
watt surface-mount permanent magnet synchronous machine.
Finally, this paper represents a significant extension of our
conference paper [28]. Specifically, we have:

1) extended the design to the more general PMSM model;
2) included a more comprehensive discussion of the pro-

posed SIC methodology for overactuated systems;
3) provided a thorough analysis of persistently exciting

inputs as well as necessary and sufficient conditions for
parameter convergence;

4) updated and expanded the experimental results.

II. SIMULTANEOUS IDENTIFICATION AND CONTROL
OBJECTIVE AND METHODOLOGY

In this paper, when we refer to “Simultaneous Identification
and Control” or “SIC”, we are referring specifically to control
designs which ensure that sufficient conditions for accurate
parameter identification (i.e., persistently exciting inputs) are
maintained in addition to achieving a control objective, such as
output regulation. This is in contrast to typical adaptive control
designs, which generally guarantee zero steady-state control
error, regardless of the accuracy of the estimated parameters.
However, in some applications, accurate knowledge of the
system parameters is desirable, for example, for condition
monitoring, or to guarantee specific transient characteristics.
While there are clear advantages to having accurate parameter
knowledge, identification and control are typically conflict-
ing objectives, necessitating a trade-off as discussed in the
introduction. However, overactuated systems provide an op-
portunity to achieve both identification and control objectives
simultaneously and without compromise, since there is no
unique input vector for a given output value.

The SIC design approach demonstrated in this paper on
torque regulation in PMSMs is based on constraining the
states of the system (i.e., the direct and quadrature-axis stator
currents, ird and irq) to a set which corresponds to a particular
desired (regulated) output value. Specifically, we are interested
in regulating the (unmeasured) electromagnetic torque output
of PMSMs, τ , for which the regulated output error is defined
as follows:

eτ = τ∗ − τ,
= τ∗ − h(~θ, ird, i

r
q),

(1)

where τ∗ is the reference torque input and h( · ) : R2 7→ R is
the nonlinear torque output mapping provided in (4) which is
dependent on the parameters, ~θ. Note that eτ describes a 1-D
manifold, i.e., a line, in the two-dimensional (ird, i

r
q) state-space

(see Figure 1). We define this output error-zeroing manifold
as follows:

M := {(ird, irq) ∈ R2 : eτ = τ∗ − h(~θ, ird, i
r
q) = 0}. (2)

Thus, restricting the system state to this manifold ensures that
our output regulation objective is achieved, while the non-zero
dimension of M provides space in which the state may vary
for identification purposes.

While it is possible to drive the state to points in the set
M with a single input, provided thatM is in the controllable
subspace, it is generally not possible (with a single input) to

݅௤௥

݅ௗ௥
Δ݅ௗ௥ , Δ݅௤௥

ℳ: ߬∗ − ℎ ,Ԧߠ ݅ௗ௥ , ݅௤௥ = 0

Fig. 1. Depiction of a 1-D manifold in R2.
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vary the state within the set M without departing for a time,
which results in a perturbation of the regulated output. Over-
actuation provides additional inputs to the system which may
be coordinated in such a way that the state not only converges
toM, but also varies within the set, without departing. Recall
that the torque regulation problem for PMSMs is overactuated
since we have two inputs to the system, vrd and vrq , but only one
“regulated” output, i.e., torque. Thus, for our application, we
wish to find an input pair, (vrd, v

r
q)(t), such that the states, ird

and irq , converge asymptotically to the setM, as defined in (2),
while generating sufficient excitation for parameter estimation
by varying (ird, i

r
q) within M. This is achieved by designing

an adaptive current regulator, developed in Section IV, which
ensures asymptotic tracking of filtered reference currents in the
presence of parameter uncertainty. The reference currents are
computed by specifying a reference torque and a persistently
exciting direct-axis current reference and solving the torque
output mapping for the quadrature-axis current.

III. FIELD-ORIENTED TWO-PHASE EQUIVALENT
DYNAMIC MODEL FOR PMSMS

TABLE I
LIST OF COMMON NOTATION.

Symbol Description

Electrical Variables

vrd(t) Direct-axis Voltage in Rotor Ref. Frame

vrq (t) Quadrature-axis Voltage in Rotor Ref. Frame

ird(t) Direct-axis Current in Rotor Ref. Frame

irq(t) Quadrature-axis Current in Rotor Ref. Frame

R Stator Winding Resistance

Ld Direct-axis Stator Self-Inductance

Lq Quadrature-axis Stator Self-Inductance

ΛPM Permanent Magnet Flux Linkage

Mechanical Variables

τ Three-Phase Electromagnetic Torque

ωr Rotor Angular Velocity

ωre = P
2
ωr Rotor Electrical Angular Velocity

P Number of Poles

Special Matrices

I Identity Matrix

0 Zero Matrix

Field-oriented control (FOC) [29] and its variants have
become the standard for high-performance control of AC
machinery and drive systems. By projecting the sinusoidal
electrical variables into appropriate rotating reference frames
using the Park transform [30], a decoupling of the torque-and-
field-generating components of electrical currents is achieved.
The resulting field-oriented machine dynamics are analogous
to that of a separately excited (field-winding) DC machine,
where field-and-torque-generating electrical currents are inde-
pendently controlled.

The proposed control algorithm is designed around the
standard rotor field-oriented two-phase equivalent model for

N

dr

NS

S

dN turns

id

d

q
q

id

μ → ∞
Stator

d

q
qr

Rotor
μ → ∞

θr

Fig. 2. Cross-section of the two-phase equivalent, two-pole smooth airgap
interior-permanent-magnet PMSM machine.

permanent-magnet synchronous machines [31]. This model,
and the subsequent control design, are derived under the
following assumptions:

A1. The machine to be controlled has a smooth airgap
(i.e., slotting effects are neglected), is fed by an
ideal voltage source inverter (VSI), and is balanced
in its construction such that it can be accurately
represented by its 2-phase equivalent model;

A2. Linear magnetics is assumed (i.e., magnetic satu-
ration effects are neglected), and core losses are
neglected;

A3. The rotor (electrical) velocity, ωre, is a known (i.e.,
measured) function of time where |ωre| and |ω̇re| are
bounded for all t ≥ 0;

A4. The sampling frequency of the digital implementa-
tion is high enough that a continuous-time control
design can be sufficiently approximated;

A5. The only uncertain parameters are resistance, R,
permanent magnet flux linkage, ΛPM , and the direct
and quadrature inductances, Ld and Lq , respectively.

These are common assumptions which are valid under normal
operating conditions.

The first three assumptions (A1 - A3) simplify the model
and reduce its order, while the last two assumptions (A4 and
A5) pertain to the control design and methodology. Under
these assumptions, the dynamic model of a PMSM in the rotor
reference frame (denoted by the superscript r), in which the
direct-axis is aligned with the rotor permanent magnet flux, is
given by:

Ld
dird
dt

= −Rird + ωreLqi
r
q + vrd,

Lq
dirq
dt

= −ωreLdird −Rirq + vrq − ωreΛPM ,
(3)

with the unmeasured nonlinear torque output mapping

τ =
3P

4
[(Ld − Lq) ird + ΛPM ] irq. (4)
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Fig. 3. Block diagram of the proposed control law.

IV. ADAPTIVE CONTROL DESIGN

A. Reference Current Calculation
Given τ∗ and i∗rd , we solve for the reference quadrature

current, i∗rq , which is the primary torque generating component
of the stator currents:

i∗rq =
τ∗

3P
4

(
∆̂Li∗rd + Λ̂PM

) , (5)

where the “hat” ( ˆ ) is used to denote estimated parameters
and ∆̂L = L̂d − L̂q .

Remark: The expression (5) is well-defined provided that
∆̂Li

∗r
d +Λ̂PM 6= 0. For this condition (i.e., ∆̂Li

∗r
d +Λ̂PM = 0)

to occur in practice, an impractically large direct-axis current
(i.e., one which would likely exceed the current limitations of
the machine) and/or extremely erroneous parameter estimates
are required, which is impossible due to the presence of a
switching-sigma modification used to bound the parameter
estimates to reasonable values.

As shown in the next section, derivatives of the refer-
ence current trajectories are needed to properly formulate the
closed-loop error dynamics, and subsequent Lyapunov-based
design, for asymptotic tracking of time-varying signals (i.e.,
we are looking to track signals rather than regulate to a set-
point). In this paper, we use reference filters as a convenient
way of computing these derivatives online while also ensuring
that the voltage commands remain bounded under step changes
in the unfiltered reference commands (particularly torque):

~̃ir = {M(s)}~i∗r,
d

dt
~̃ir = {sM(s)}~i∗r,

(6)

where the “tilde” (˜) is used to denote the filtered reference
currents and M(s) is a stable, minimum phase, strictly proper,
unity dc gain, first-order low-pass filter2. Note that if the

2{·} denotes a dynamic operator with transfer function “·”

derivatives of τ∗ and i∗rd are bounded and known a priori,
then the reference filters may be eliminated. Next, we seek an
adaptive current-regulating control design which will ensure
asymptotic tracking of the filtered reference currents in the
presence of parametric uncertainty.

Remark: Note that the adaptive current-regulating control
design which follows only guarantees that the measured stator
currents, ~i r, asymptotically track the filtered reference cur-
rents, ~̃i r. The unfiltered reference signals, ~i∗r, and ~̃i r (and
subsequently,~i r) will differ accordingly, as determined by the
frequency response characteristics of the user designed LTI
reference filter, M(s).

B. Adaptive Current Regulator

The direct and quadrature stator current errors are defined
as follows:

erid = ĩrd − ird,
eriq = ĩrq − irq.

(7)

The following control law,

vrd = R̂ĩrd + L̂d
dĩrd
dt
− ωreL̂qirq +Kpde

r
id,

vrq = R̂ĩrq + L̂q
dĩrq
dt

+ ωreL̂di
r
d +Kpqe

r
iq + ωreΛ̂PM ,

(8)

where Kpd,Kpq > 0 are constant proportional control gains, is
formulated using a combination of feedforward, feedback, and
decoupling terms, designed to yield exponentially stable stator
current error dynamics (9) under perfect model knowledge
(i.e., R̂ = R, L̂d = Ld, L̂q = Lq , and Λ̂PM = ΛPM ):

ėrid = − 1

Ld
(R+Kpd) e

r
id,

ėriq = − 1

Lq
(R+Kpq) e

r
iq.

(9)

Note that the use of a derivative term in the feedforward
portion of the control law (8) does not amplify noise, as the
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differential operator is acting on reference signals (6) which
are free of noise.

However, when the parameters R, Ld, Lq , and ΛPM are not
well known, one can show that the closed-loop error dynamics
are given by:

~̇e ri = L−1Φ>~eθ − (RI + Kp) L−1~e ri , (10)

where Kp = diag [Kpd,Kpq] is a diagonal matrix of the
proportional control gains, L = diag [Ld, Lq] is a diago-
nal matrix of the direct and quadrature axis self-inductance,
~e ri =

[
erid eriq

]>
is the stator current error vector, and

~eθ =
[
eR eLd

eLq
eΛ

]>
is the parameter error vector, with

eR = R − R̂, eLd
= Ld − L̂d, eLq

= Lq − L̂q , and
eΛ = ΛPM − Λ̂PM . Finally, the regressor matrix, Φ, in (10)
is given by

Φ>(t, ~e ri ) =

[
~φ>d
~φ>q

]
=

[
ĩrd

d
dt ĩ

r
d −ωreirq 0

ĩrq ωrei
r
d

d
dt ĩ

r
q ωre

]
. (11)

To stabilize (10) and ensure that our simultaneous identi-
fication and control objectives are achieved in the presence
of parameter uncertainty, adaptation is required. A block
diagram of the proposed controller implementation is given in
Figure 3, where the crossing arrows behind blocks symbolize
portions of the controller which are tuned by the adaptation. To
derive the adaptive update law, a Lyapunov stability analysis
of the closed-loop system is performed. The adaptive law
is then selected such that it makes the Lyapunov function
monotonically decreasing, thereby guaranteeing closed-loop
stability of the controlled system. The following Lyapunov
function candidate forms the basis of the derivation:

V (~e ri , ~eθ) =
1

2

(
~e r>i L~e ri + ~e>θ Γ−1~eθ

)
, (12)

where Γ = Γ> > 0 is the adaptation gain matrix. The first
derivative of (12) with respect to time is given by

V̇ (~e ri , ~eθ) = ~e r>i L~̇e ri + ~e>θ Γ−1~̇eθ. (13)

Substituting (10) into (13), with some manipulation, yields:

V̇ = −~e r>i [RI + Kp]~e
r
i + ~e>θ Φ~e ri + ~e>θ Γ−1~̇eθ. (14)

It is assumed that the actual machine parameters are chang-
ing very slowly, i.e.:

~̇eθ = ~̇θ −
˙̂
~θ ≈ −

˙̂
~θ, (15)

where ~̂θ =
[
R̂ L̂d L̂q Λ̂PM

]>
. Finally, the adaptive law is

selected as,
˙̂
~θ = ΓΦ~e ri , (16)

and so (14) becomes

V̇ (~e ri , ~eθ) = −~e r>i [RI + Kp]~e
r
i ≤ 0. (17)

Therefore, the closed-loop system (3), with control law (8)
and adaptation (16), is stable in the sense of Lyapunov [32].

To establish asymptotic convergence of the stator current
error (i.e., ~e ri → 0 as t→∞), Barbalat’s lemma [32] is used
to show that V̇ (~e ri , ~eθ)→ 0 as t→∞. Note that the preceding

Lyapunov stability analysis has established that V (~e ri , ~eθ) is
differentiable and has a finite limit as t → ∞. To establish
uniform continuity of V̇ (~e ri , ~eθ) we compute:

V̈ (~e ri , ~eθ) = −2~e r>i [RI + Kp] ~̇e
r
i , (18)

and note that:
• ~e ri and ~eθ are bounded from (12) and (17),
• ~̃ir and d

dt
~̃ir are bounded by design, and so

• ~ir = ~̃ir − ~e ri is bounded,
thus ~̇e ri is bounded (from inspection of (10)), and so V̈ (~e ri , ~eθ)
is also bounded. Therefore, from Barbalat’s lemma we have
that V̇ (~e ri , ~eθ) → 0 as t → ∞; and so we conclude that the
control law (8) with adaptive law (16) renders the system (3)
stable in the sense of Lyapunov, with ~e ri → 0 as t→∞.

Lastly, we note that, in practice, our implementation
of the adaptive update law (16) includes a “switching σ-
modification” [1] for robustness, which acts as a “soft pro-
jection”, applying a leakage term, σ, to the adaptive law only
when a parameter is exceeding an expected limit on its range
of variation. A benefit of this modification is that the ideal
behavior of the adaptive law is preserved so long as the
estimated parameters remain within their acceptable bounds
(i.e., |~̂θi(t)| < M0,i).

V. PARAMETER IDENTIFICATION

A. Parameter Convergence

With the controller (8) and adaptive (16) laws presented in
the previous section, the closed-loop error dynamics (control
and parameter) take the form

~̇e ri = L−1Φ>(t, ~e ri )~eθ − L−1 (RI + Kp)~e
r
i ,

~̇eθ = −ΓΦ(t, ~e ri )~e ri ,
(19)

which may be rewritten as follows

d

dt

[
~e ri
~eθ

]
=

[
A(t, ~e ri ) + B(t, ~e ri , ~eθ)

C(t, ~e ri )

]
, (20)

where A(t, ~e ri ) = −L−1 (RI + Kp)~e
r
i , B(t, ~e ri , ~eθ) =

L−1Φ>~eθ, and C(t, ~e ri ) = −ΓΦ~e ri . Additionally, we note
that the Lyapunov analysis in Section IV establishes Uniform
Global Stability (UGS) of the closed-loop system (19). It
follows from Theorem 3 in [33] that the origin of the closed-
loop system (20) is Uniformly Globally Asymptotically Stable
(UGAS) if, and only if, Φ(t, 0) is persistently exciting, i.e.,
there exist T > 0, α0 > 0, and α1 > 0 such that,

α1I ≥
∫ t+T

t

Φ(σ, 0)Φ>(σ, 0)dσ ≥ α0I, ∀ t ≥ 0. (21)

B. Persistently Exciting Inputs

To determine necessary and sufficient conditions for persis-
tent excitation, and thus for parameter convergence, we will
take advantage of the connection between persistent excitation
and linear independence of the functions which make up
the rows of the regressor matrix. The definition for linear
independence of vector-valued functions (of time) is similar to
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that of constant vectors (e.g., in Rn) with the difference being
that an interval of interest (i.e., the domain) is specified. The
definition for linear independence of vector-valued functions
is given here for convenience:

Definition 1. (Linear Independence of Functions [34]): A set
of 1 × p real-valued functions, ~fi(t) where i = 1, · · · , n, is
said to be linearly dependent on the interval [t0, t1] over the
field of reals if there exist scalars ci, not all zero, such that

c1 ~f1(t) + c2 ~f2(t) + · · ·+ cn ~fn(t) = 0

for all t ∈ [t0, t1]. Otherwise, they are said to be linearly
independent on the interval [t0, t1].

Naturally, there are a number of theorems which may be
used to check whether or not a set of functions is linearly
independent. For example, the Grammian matrix may be used:

Theorem 2. (Grammian [34]): Let ~fi(t), for i = 1, 2, · · · , n,
be 1 × p real-valued continuous functions defined on the
interval [t1, t2]. Let F be the n × p matrix with ~fi(t) as its
ith row. Define

W(t1, t2) ,
∫ t2

t1

F(t)F>(t)dt

Then ~f1(t), ~f2(t), · · · , ~fn(t) are linearly independent on
[t1, t2] if, and only if, the n × n constant Grammian matrix,
W(t1, t2), is positive definite.

At this point, the connections between linear independence
of the functions which comprise the rows of the regressor
matrix, and persistent excitation can be made by noting that
the definition of persistent excitation is based on the Grammian
matrix. For completeness and easy reference, this connection
is summarized in the following theorem:

Theorem 3. (Linearly Independent Functions and Persistent
Excitation): Consider the matrix function Φ(t) : R≥0 7→
Rn×m where the elements of Φ(t) are bounded for all time, t.
The regressor matrix Φ(t) is persistently exciting if, and only
if, the rows of Φ(t) are linearly independent on the interval
[t, t+ T ] for all t ≥ 0 and some T > 0.

Proof: Follows from the Grammian matrix and its properties
and is provided in the Appendix. �

The regressor matrix (11) is a function of the reference
signals, ĩrd and ĩrq , as well as the states of the system, ird
and irq . However, we may rewrite the states in terms of their
corresponding reference signals and tracking errors, leading to
the following representation of the regressor matrix,

Φ(t, ~e ri ) = Φo(t) + Φe(t, ~e
r
i ),

=


ĩrd ĩrq
d
dt ĩ

r
d ωreĩ

r
d

−ωreĩrq d
dt ĩ

r
q

0 ωre

+


0 0

0 −ωreerid
ωree

r
iq 0

0 0

 .
(22)

Recall that our analysis in Section IV established that the
stator current error is bounded (i.e., Φe(t, ~e

r
i ) ∈ L∞) and

goes to zero asymptotically (i.e., Φe(t, ~e
r
i ) → 0 as t → ∞).

From Lemma 4.8.3 in [1], it follows that if the matrix Φo(t)
is persistently exciting, then Φ(t, ~e ri ) is persistently exciting.
Additionally, we note that from Theorem 3 in [33], it is
sufficient to show that Φ(t, 0) ≡ Φo(t) is persistently exciting.

To simplify our analysis, we will conservatively assume
that the command torque and rotor electrical velocity are
constant, i.e., τ̃ = T̃0 and ωre = Ωre, as well as Ld ≈ Lq .
These assumptions generally represent something of a “worst-
case” scenario, since a time-varying torque reference and/or
rotor electrical velocity, as well as a significant magnetic
saliency, i.e., Lq >> Ld, will aid in parameter identification
by providing additional excitation. Either directly, in the case
of a varying torque command (and/or rotor velocity), or
indirectly, via coupling between the command currents through
the torque expression (5) in the presence of a significant
magnetic saliency. Note that for the torque to remain constant
in the presence of excitation introduced via the direct-axis
dynamics, the quadrature-axis current must vary in an inverse
manner, introducing additional excitation to the quadrature
axis dynamics. Under these assumptions, we can rewrite the
matrix Φo(t) as follows,

Φo(t) =


ĩrd(t) Cτ T̃0

d
dt ĩ

r
d(t) Ωreĩ

r
d(t)

−ΩreCτ T̃0 0

0 Ωre

 . (23)

where Cτ is a positive constant scalar, Cτ = 4
3PΛPM

> 0.
Additionally, we will neglect the reference filter M(s) in our
analysis as it has no effect on the results3. Without loss of
generality, we may take ĩrd = sin(ωt):

Φo(t) =


sin(ωt) Cτ T̃0

ω cos(ωt) Ωre sin(ωt)

−ΩreCτ T̃0 0

0 Ωre

 . (24)

From Theorem 3, we may establish necessary and sufficient
conditions for the regressor matrix (24) to be persistently
exciting, by establishing conditions under which the rows of
Φo(t) in (24) are linearly independent. To do this, we will
use the following theorem for checking linear independence
of functions:

Theorem 4. (Derivative Test [34]): Assume that the 1 × p
real-valued continuous functions ~f1(t), ~f2(t), · · · , ~fn(t) have
continuous derivatives up to order (n − 1) on the interval
[t1, t2]. Let F be the n × p matrix with ~fi(t) as its ith row,
and let F(k) be the kth derivative of F. If there exists some
t0 in (t1, t2) such that the n× np matrix[

F(t0)
... F(1)(t0)

... F(2)(t0)
... · · ·

... F(n−1)(t0)

]
has rank n, then the functions, ~fi(t), are linearly independent
on the interval [t1, t2] over the field of reals.

3Given a persistently exciting u with u̇ bounded, and a stable, minimum
phase, proper transfer function M(s), it follows that y = M(s)u is also
persistently exciting [1].
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Since we are interested in sinusoidal inputs, we will con-
sider t0 ∈ [0, 2π

ω ]. Applying Theorem 4 to (24), we take
t0 = π

2ω and compute:

det
([

Φo(t0) Φ̇o(t0)
])

= −Cτ T̃0ω
2Ω3

re. (25)

We conclude that the rows of Φo(t) are linearly independent
on [0, 2π

ω ], and Φ(t, ~e ri ) is therefore persistently exciting,
provided that:

1) the direct-axis command current, ĩrd, has at least one
sinusoidal component (i.e., ω 6= 0),

2) the command torque is non-zero, T̃0 6= 0,
3) the rotor (electrical) velocity is non-zero, Ωre 6= 0.

Remark: It should be noted that, in practice, it is important
to normalize the rows of the regressor matrix such that
the peak values are all around unity. Otherwise, the wide
range of machine parameters, which are separated by orders
of magnitude, will lead to convergence issues due to poor
numerical conditioning. Note that this scales the corresponding
parameter estimates as well.

Remark: When the rotor speed is not constant, but changing
slowly with respect to the electrical reference variables, the
same analysis can be carried out following the analysis tech-
niques used in robust adaptive control [1]. The assumption that
the rotor speed is slowly varying is justified by the time-scale
separation between the electrical and mechanical dynamics.

VI. SIMULATION RESULTS

A. Ideal Case

Simulations using Matlab/Simulink are used to validate the
proposed SIC design for PMSMs. We present results for the
ideal case first, which assumes a “continuous-time” controller
implementation, no time delay, and noise-free stator current
measurements. Additionally, the inverter is assumed to be
ideal in that the sinusoidal voltage commands generated by
the control algorithm are fed directly into the machine model.

The proposed control methodology is demonstrated in Fig-
ure 4, specifically constraining the system state (i.e., the stator
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Fig. 4. Simulation result demonstrating state-trajectory convergence to the
desired constant-torque manifolds using the proposed adaptive control design
methodology with a step change in the commanded torque from 0.2 N-m to
0.4 N-m at a fixed rotor speed of 2000 RPM.

currents) to manifolds, M, which correspond to a constant
torque output (i.e., zero regulated output error). The adaptive
controller is initialized with mismatched parameters, and a
step-change in the command torque occurs 3 seconds into
the simulation. Machine parameters which exaggerate the
curvature of the manifolds were selected for the purpose of
demonstrating the effectiveness of the proposed methodology.

The simulation results presented in Figure 5 demonstrate the
stagnation of the parameter estimates when there is a lack of
persistent excitation (t ≤ 0.75 sec). Inspection of Fig. 5 reveals
that, initially, when the direct-axis current and output torque
commands are zero, the parameters fail to fully converge, as
expected. Additionally, while there is partial convergence at
0.25 seconds due to excitation provided by the step change
in command torque, the resistance and direct-axis inductance
estimates do not converge quickly and fully until the excitation
signal is added at 0.75 seconds. Finally, the black arrows in
the “zoomed” plots in Fig. 5 point out overshoot in the torque
resulting from the lack of parameter convergence.
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Fig. 5. Simulation of an ideal implementation of the proposed SIC design for
PMSMs demonstrating parameter stagnation due an initial lack of persistent
excitation, and the improvement resulting from the introduction of the
excitation signal at 0.75 seconds.

B. Sampled-data Implementation: Time Delay and Compen-
sation

The experimental implementation of the proposed control
algorithm must take into account the sampled-data nature
of its execution on a microprocessor. In particular, sampling
of stator currents and encoder measurements is synchronized
with a center-based pulse-width modulation (PWM) structure
to prevent the pickup of electromagnetic interference (EMI)
generated by switching transitions during sampling. A con-
sequence of this synchronization is that it leads to a one-
switching-period delay between sampling measurements and
updating duty cycles, as depicted in Figure 6.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. X, MONTH 2016 8

s s ss

a,b,c

a,b,c

a,b,c a,b,c

a,b,c a,b,c

Fig. 6. Timing sequence of digital controller implementation.

The presence of this time-delay will impose limits on
control gains, Kpd and Kpq . Additionally, the use of reference-
frame advancing in the inverse Park transform is required, as
the rotor angular displacement during the delay interval can
be significant. This discrepancy between the rotor position at
the beginning and at the end of a sample period can lead to
instability and parameter drift in the adaptive controller. To
compensate for this angular displacement, the rotor position,
θre, at the center of the next sample period is predicted
assuming that the rotor velocity, ωre, is constant over the
sample period, Ts:

θ̂re[k + 1] = θre[k] +
3

2
ωre[k]Ts, (26)

where k = 1, 2, 3... represents the discrete time indices.
The predicted rotor position (26) is then used to compute
the inverse Park transform in the discrete-time controller
implementation.

To demonstrate the impact that this rotor angle discrepancy
has on the parameter estimator, we include the simulation
results in Figure 7. A triggered subsystem is used in Simulink
to capture the sampled-data nature of the experimental imple-
mentation. The subsystem is triggered by an inverter model
which is using center-based PWM at a rate of 8 kHz, like the
experimental set-up, and includes a one-time-step delay. The
simulation which produced Fig. 7 did not include reference-
frame advancing based on (26). The switching-σ modification
bounds the parameter estimates. However, inspection of Fig.
7 clearly reveals that the parameter estimates (resistance and
quadrature-axis inductance in particular) are sensitive to this
rotor angle discrepancy resulting from the time delay present
in the sampled-data implementation.
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Fig. 7. Simulation of sampled-data system without reference-frame advancing
at a speed of 2000 RPM with step changes in command torque (the same as
in Fig. 8), leading to poor parameter estimator performance.

For comparison (to Fig. 7), we provide simulation results
which include reference frame advancing based on (26) in
Figures 8 and 9. This simulation uses the same Simulink code
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Fig. 8. Simulation of the proposed adaptive control design in a sampled-data
scenario with reference-frame advancing based on (26) and measurement noise
at a rotor speed of 2000 RPM.

that was used to generate the experimental code using Real-
time Workshop. It should be noted that the inverter model in
this result did not include dead-time effect [13]. The “nominal”
parameters provided in Table II were used in the PMSM
model. Inspection of Fig. 8 reveals that the algorithm works
as intended under sampled-data conditions, provided that the
time-delay is compensated via reference-frame advancing.

Finally, the simulation results provided in Figure 9 demon-
strate operation under field-weakening [12], in which a nega-
tive direct-axis current is commanded to reduce the EMF gen-
erated by the permanent magnets and extend the speed range of
the machine under voltage constraints. This is accomplished by
simply adding a negative (field-weakening) direct-axis current
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Fig. 9. Simulation of the proposed adaptive control design under field
weakening (i.e., the is a negative offset in the direct-axis current) in a sampled-
data scenario with reference-frame advancing based on (26) and measurement
noise at a rotor speed of 2000 RPM, with a step change in machine parameters
at 3.5 sec.
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offset to the excitation signal. The simulation results in Fig.
9 also demonstrate the ability to track a step change in
parameters which occurs 3.5 seconds into the simulation. Note
that, while the excitation signal can be reduced in amplitude, as
it was in Fig. 9 (in comparison to Fig. 8), a smaller excitation
signal will slow down parameter convergence (for equivalent
gains) and will cease to provide any benefit when the excitation
signal amplitude approaches the noise levels of the system.

VII. EXPERIMENTAL VALIDATION

A. Test Machine Parameters

For simulation and comparison purposes, the “nominal” test
machine parameters were determined offline using standard
techniques. The (DC) stator resistance was measured with a
Digital Multi-Meter, inductance with an Agilent E4980A LCR
meter, and the permanent magnet flux linkage was identified
using an open-circuit test and a linear regression. These
nominal parameters, denoted by an overbar, are provided in
Table II. We must emphasize that we do not expect that the
parameter estimates provided by our adaptive controller will
converge to these values, since they are not necessarily the
true physical parameters of the machine. For instance, the
resistance measured with a DMM does not account for skin-
effect and inverter losses, while the formation of eddy currents
in the rotor iron can lead to an error in the measured inductance
when using a standard LCR meter.

TABLE II
“NOMINAL” TEST MACHINE PARAMETERS.

Parameter Value

Resistance, R̄ 109 mΩ

Direct-axis self-inductance, L̄d 192 µH
Quadrature-axis self-inductance, L̄q 212 µH

PM Flux Linkage, Λ̄PM 12.579 mV-s
No. of Poles, P 10

B. Description of the Experimental Set-up

Gate
Drive

Signals
Gate
Drive

Signals

r r

a
b dc

BUS

User
Inputs

Fig. 10. Experimental setup.

The proposed robust adaptive control algorithm has been
implemented on experimental hardware using a dSPACE
DS1104 controller board, and the test machine (Table III) is
a 3-phase, 10-pole, 250 watt SMPM machine from MOTOR-
SOLVER with “nominal” parameters (denoted by the over bar)
listed in Table II. A 250-watt DC machine from the same
manufacturer serves as the load for the SMPM machine.

A power MOSFET inverter is used to drive the motors
with a switching frequency of 8 kHz and a bus voltage of
42 VDC. First-harmonic dead-time compensation is used to
mitigate the voltage discrepancy resulting from the insertion
of “dead-time” in the gate-drive signals [35]. Duty cycles
are calculated using conventional pulse-width-modulation, and
the ADC sampling is synchronized with, and offset from,
the center-based PWM signals to avoid sampling during a
switching event (as discussed in the previous section). Note
that the sampling rate of our controller is also 8 kHz due
to this synchronization of switching and sampling. Finally,
position/velocity feedback is provided by a 2048-line (per
revolution) incremental encoder.

TABLE III
MANUFACTURER MACHINE RATINGS.

Test Motor
Type: PM Brushless
No. Phases: 3
V/I: 42 V/5.7 A
Max. Speed: 4000 RPM
Rated Power: 250 W

Load Motor
Type: DC
No. Phases: N.A.
V/I: 42 V/6 A
Max. Speed: 4000 RPM
Rated Power: 250 W

C. Experimental Results

Since mechanical torque was not measured during these ex-
periments, the quadrature stator current (in the rotor reference
frame) is used to evaluate the transient performance of the
proposed torque regulator in addition to the estimated elec-
tromagnetic torque (27), which can vary with the parameter
estimates:

τ̂ =
3P

4

[(
L̂d − L̂q

)
ird + Λ̂PM

]
irq. (27)

It should be noted that, since torque is not measured directly,
accurate knowledge of the permanent magnet flux linkage, as
well as the direct and quadrature self-inductance, is required
for accurate torque regulation. Torque steps, used to evaluate
the performance of the proposed adaptive torque regulator, are
provided in Figures 11 and 12.

In Fig. 11 we see that the estimated torque tracks the
commanded value very well without any undesirable jumps
or drifting in the parameter estimates. A direct-axis current
reference of ĩrd = 1.5 sin(150t) + 1.5 sin(300t) amps provides
excitation for parameter estimation. Note that the estimated
parameter values have been normalized with respect to their
“nominal” values in Table II, which are not necessarily the
true values (which are unknown), to facilitate plotting on the
same axis for comparison.

A feature of the proposed adaptive controller design is that
its closed-loop transient response remains consistent across a
wide range of operating points. To demonstrate this, torque
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Fig. 11. Experimental torque steps with adaptation on at 2000 rpm.

steps from 0 to 0.4 N-m were performed at 2500, 1200, and 0
RPM, and are plotted in Fig. 12. Note that the responses over-
lay, indicating that the controller is performing as expected.
Additionally, the “ripple” or “noise” which can be seen in the
signals is expected, and is largely due to the non-ideal slotting
effects in the machine. Furthermore, the decision to stop at
2500 RPM is based on the fact that the voltage-constraints
of the inverter are encountered at around 3000 RPM. Field-
weakening may be used to extend operation to higher speeds
by adding the appropriate negative offset to the excitation
signal (i.e., including a negative DC bias in the persistently
exciting direct-axis reference current).

As discussed earlier in this paper, the proposed adaptive
control design achieves the simultaneous identification and
control objective in that it allows excitation signals to be
introduced for parameter identification whose impact on the
output is minimized (asymptotically, in the case of our design).
This property is demonstrated in Figure 13, in which the
transient response of the experimental adaptive parameter
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Fig. 12. Experimental transient responses of estimated torque (top) and
measured quadrature-axis current (bottom) across a wide range of rotor speeds.
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Fig. 13. Experimental adaptive parameter estimator for a constant torque
command of 0.2 N-m at a fixed rotor speed of 2000 RPM demonstrating
transient characteristics of the parameter estimator as well as asymptotically
vanishing torque perturbation due to the excitation signal.

estimator for a constant torque command of 0.2 N-m at a fixed
rotor speed of 2000 RPM is plotted. Initially, the parameter
values are intentionally mismatched such that the excitation
signal disturbs the torque output. Inspection of Fig. 13 reveals
that, as the estimates converge, the disturbance caused by the
excitation signal vanishes, as expected.

To gauge the performance of our parameter identification,
we recorded the steady-state values of the estimated parame-
ters over a range of operating points in which the parameters
are all identifiable (i.e., non-zero rotor speed and torque
command). Inspection of the results in Figure 14 indicate
that the parameter estimation is working very well overall.
The resistance estimate is fairly consistent across rotor speed,
but increases slightly with the torque command, potentially
due to temperature rise. The estimated direct-axis inductance
and permanent magnet flux linkage are very consistent across
rotor speed and torque, as expected. The drop in the estimated
permanent magnet flux linkage at 500 RPM is likely due
to the increasing impact of the dead-time effect at lower
speeds (which generally correspond to smaller stator voltages).
Finally, the wider variation in the quadrature-axis inductance
was anticipated, as this parameter was observed to be par-
ticularly sensitive to encoder misalignment while tuning the
experimental controller. This behavior was also observed in
simulations which introduced a fixed rotor angle offset error.
However, we have found that the impact of this variation on the
controller performance (i.e., output regulation) is negligible.

Still, it is worth noting that the quadrature-axis inductance
estimate seems to improve at higher speeds, yielding a nearly
flat trend at 2000 RPM (see Fig. 14), and estimates around the
same value as the direct-axis inductance. This is to be expected
as our test machine was a surface-mount permanent magnet
(SMPM) machine which, characteristically, have a negligible
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Fig. 14. Experimental characterization of steady-state parameter estimates
over a wide range of rotor speeds and torque commands.

magnetic saliency (i.e., it is commonly assumed that Ld ≈ Lq
for SMPM machines). Recall that, under a constant torque
command and rotor speed, the third row of the regressor, which
relates to the quadrature inductance estimate (see equation
(24)), is dependent on the following term: −ΩreCτ T̃0. At a
minimum, a nonzero torque command, T̃0, and rotor speed,
Ωre, are needed for the regressor to be persistently exciting,
otherwise the third row of the regressor will be all zeros
and the estimate of quadrature-axis inductance will stagnate.
Practically, it is expected that the estimate of the quadrature-
axis inductance, Lq , will suffer from drifting in the presence
of modeling errors, such as encoder misalignments, at low
speeds and/or torque commands. This may explain why the
estimate of Lq seems to improve at high speeds, as well as
higher torque commands, as observed in Fig. 14.

VIII. CONCLUSION

This paper extended results from [28], which presented a
new robust adaptive torque regulating controller for SMPM
machines that estimates resistance, inductance, and perma-
nent magnet flux linkage online. The adaptive controller for
PMSMs presented was derived using Lyapunov’s stability
theorem, and a robust modification to the derived adaptive
law is used to ensure closed-loop stability in the presence
of unmodeled disturbances. The control law utilizes a com-
bination of adaptively-tuned feedforward (to achieve zero
steady-state error), d − q decoupling (to improve transient
response), and proportional feedback (to add robustness to
disturbances) terms. Overactuation of the system is exploited
to simultaneously achieve parameter convergence and torque

regulation. Excitation for parameter identification is introduced
via the direct-axis current reference input, and necessary
conditions for persistent excitation were discussed. Simulation
results verifying the performance of the control design were
presented. Finally, remarks specific to experimental imple-
mentation challenges, and experimental results validating the
performance of the proposed design, were discussed.

If desired, machine parameter may be identified during
startup. The excitation may then be turned off after a com-
missioning phase, and the adaptation stopped by setting the
adaptation gain to be the zero matrix. However, by keeping
the adaptation and excitation active, the controller will be
able to compensate for parameter variations, particularly in the
inductances and PM flux linkage whose variations directly im-
pact the accuracy of the unmeasured regulated torque output.
Finally, the magnitude of the excitation signal can be reduced
when operating near the voltage / current limits of the machine,
shutting off the excitation and adaptation completely when the
amplitude approaches the noise level of the system. The main
impact of reducing the amplitude of the excitation signal is
slower parameter convergence, while drifting may occur when
the amplitude reaches the noise level.

APPENDIX A
PROOF OF THEOREM

Consider the matrix function Φ(t) : R≥0 7→ Rn×m where
the elements of Φ(t) are bounded for all time, t.

“If”
Assume that regressor matrix Φ(t) is persistently exciting.

It follows that there exist α1, α0, T > 0 such that

α1I ≥
∫ t+T

t

Φ(σ)Φ>(σ)dσ ≥ α0I, ∀ t ≥ 0.

From Theorem 5-1 in [34], the Gramian matrix, W(t, t+T ),
is positive definite, i.e.

W(t, t+ T ) ,
∫ t+T

t

Φ(σ)Φ>(σ)dσ ≥ α0I,

if, and only if, the rows of Φ(σ) are linearly independent on
[t, t+T ]. Thus, it follows that if Φ(t) is persistently exciting,
then the rows of Φ(t) are linearly independent on [t, t+ T ].

“only if”
Assume that the rows of Φ(t) are linearly independent on

[t, t + T ] for all t ≥ 0 and some T > 0. It follows that the
Gramian matrix is positive definite; i.e., there exists α0 > 0
such that

W(t, t+ T ) ≥ α0I ∀ t ≥ 0.

Furthermore, since the elements of Φ(t) are bounded for all
time, t, it follows that there exists α1 > 0 such that

α1I ≥W(t, t+ T ) ≥ α0I ∀ t ≥ 0.

Thus, if the rows of Φ(t) are linearly independent on [t, t+T ]
for all t ≥ 0 and some T > 0, then Φ(t) is persistently
exciting.

�
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